
Remigiusz Wi±niewski

Synthesis of Compositional
Microprogram Control Units
for Programmable Devices

Ph.D. Thesis

Supervisor:
prof. Alexander Barkalov

University of Zielona Góra
Zielona Góra, Poland, 2008



To my lovely parents.



Abstract

The dissertation focuses on the structural decomposition of control units. Six
new synthesis methods of compositional microprogram control units are intro-
duced. Proposed solutions can be divided into two main groups. The �rst one
deals with CMCUs with mutual memory, where the internal code of the controller
is recognized by the microinstruction address. The second group of presented
methods is based on control units with sharing codes, where the microinstruction
address is formed as a concatenation of codes generated by the counter and by the
register. The aim of all proposed solutions is to reduce the number of logic blocks
of the destination programmable device.

The second scope of the dissertation is partial recon�guration of CMCUs im-
plemented on an FPGA. The idea is based on swapping the content of the control
memory, while the rest of the system is not modi�ed. Such an approach permits
to decrease the size of a bit-stream that is sent to the device. Therefore, time
needed for device con�guration is shorter. Additionally, the proposed solution is
much safer due to fewer errors that may occur during recon�guration of FPGAs.
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The list of the most important symbols

B - the set of operational vertices of the �ow-chart; B={b1,. . . ,bK}

X - the set of conditional vertices of the �ow-chart; X={x1,. . . ,xL}

Y - the set of microoperations executed by the controller; Y ={y1,. . . ,yN}

K - the number of all operational vertices in the �ow-chart

L - the number of conditional vertices in the �ow-chart

N - the number of microoperations that are executed by the controller (the to-
tal number of microoperations is equal to N + 2 because of two additional
microoperations: y0 and yK)

C - the set of operational linear chains; C={α1,. . . ,αG}

C ′ - the subset of the set C, contains only such OLCs that are not connected with
the �nal vertex of the �ow-chart; C ′ ⊂ C

I - the set of inputs of OLCs; I={I1,. . . ,IJ}

O - the set of outputs of OLCs; O={O1,. . . ,OG}

G - the total number of OLCs in the �ow-chart

J - the number of all OLCs inputs

αg - the operational linear chain g

I t
j - the t-th input of the operational linear chain αj

Og - the output of the OLC αg

M g - the number of operational vertices that belongs to the OLC αg
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M1 - the number of operational vertices of the longest OLC; M1=M g (here αg is
the OLC that contains the most operational vertices)

R1 - the number of bits required to encode the longest OLC; R1=dlog2M1e

M2 - the number of OLCs in the set C (equal to the parameter G)

R2 - the number of bits required to encode OLCs; R2=dlog2M2e

M3 - the number of all microinstructions kept in the control memory (equal to the
parameter K and to the number of operational vertices in the �ow-chart)

R3 - the minimum number of bits required to address microinstructions; R3=dlog2M3e

MZ - the number of all OLCs inputs (equal to the parameter J)

RZ - the number of bits required to encode all OLCs inputs; RZ=dlog2MZe

ROI - the minimum number of bits required for recognition OLCs outputs

T - the excitation function for the counter; consist of R1 variables: T={t1,. . . ,tR1}

D - the excitation function for the register; consist of R2 variables: D={d1,. . . ,dR2};
it is not generated in case of CMCUs with mutual memory

A - the function generated by the counter (in case of CMCUs with sharing codes
it is treated as a minor-part of the microinstruction address, in all other
CMCUs this function directly addresses microinstructions); A={a1,. . . ,aR1}

Q - the feedback function usually generated by the register (except CMCUs with
mutual memory, where Q is generated by the counter and it is a sub-function
of A: Q ⊂ A); consist of R2 variables: Q={q1,. . . ,qR2}

Z - the excitation function for the function decoder; consist of RZ variables:
Z={z1,. . . ,zRZ

}

V - the converted microinstruction address generated by the address converter;
consist of R3 variables: V ={v1,. . . ,vR3}; usually implemented as a memory
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y0 - the additional microoperation, used for organization the addressing mode
(increments counter and forbids changing state of the CMCU when equal to
0; loads counter and changes state when equal to 1)

yK - the additional microoperation, used for indication that the �nal vertex of the
�ow-chart will be reached (at the next clock trigger); terminates fetching of
microinstructions from the control memory

SCM - the volume of the control memory:

• SCM=(N+2)∗2R1+R2 - for CMCUs with sharing codes;

• SCM=(N+2)∗2R3 - for CMCUs with address converter;

• SCM=(N+2)∗2R1 - for all others CMCUs

SFD - the volume of the function decoder:

• SFD=R1∗2RZ - for all CMCUs with mutual memory;

• SFD=(R1+R2)∗2RZ - for all CMCUs with sharing codes

SCA - the volume of the address converter; SCA=(R1 + R2)∗2R3



The list of the most important abbreviations

ASIC - Application Speci�c Integrated Circuit

BRAM - Block Random Access Memory

CLB - Con�gurable Logic Block

CPLD - Complex Programmable Logic Device

CU - Control Unit

CMCU - Compositional Microprogram Control Unit

FDC - Flip-�op with Data and asynchronous Clear

FDCE - Flip-�op with Data, asynchronous Clear and clock Enable

FPGA - Field Programmable Gate Array

FSM - Finite State Machine

HDL - Hardware Description Language

LUT - Look-Up Table

MCU - Microprogram Control Unit

PAL - Programmable Array Logic

PLA - Programmable Logic Array

PLD - Programmable Logic Device

PROM - Programmable Read Only Memory

SoC - System-on-a-Chip

SoPC - System-on-a-Programmable-Chip

SPLD - Simple Programmable Logic Device



The list of abbreviations of synthesis
methods and CMCUs structures

MM - (synthesis method of a CMCU with) Mutual Memory

FD - Function Decoder

OI - Outputs Identi�cation

OD - Outputs identi�cation and function Decoder

SC - Sharing Codes

SD - Sharing codes and function Decoder

CA - Address Converter

CD - address Converter and function Decoder

CMCU UMM - CMCU (represented as a Unit) with Mutual Memory

CMCU UFD - CMCU with Function Decoder

CMCU UOI - CMCU with Outputs Identi�cation

CMCU UOD - CMCU with Outputs identi�cation and function Decoder

CMCU USC - CMCU with Sharing Codes

CMCU USD - CMCU with Sharing codes and function Decoder

CMCU UCA - CMCU with Address Converter

CMCU UCD - CMCU with Address converter and function Decoder



Chapter 1

Introduction

A control unit (CU) is one of the most important part of any digital system
(De Micheli, 1994; Clements, 2000; �uba, 2003; Bolton, 1990; Bursky, 1999). It
can be found in almost all devices that contain microelectronics; such as computers
(central processor unit, CPU), cellular phones, cars and even remote controllers.
The control unit is responsible for managing all modules of the designed system -
it sends adequate microinstructions that should be executed (Gajski, 1997).

Most of control units that are available on the market are created as a single-
level �nite-state-machine (FSM). This means that the control unit is formed as
a simple Moore or Mealy automaton (Mealy, 1955; Moore, 1956). Such a solu-
tion was good for small systems. But the size of devices grows very fast, and
now complex digital systems can be implemented using one digital board such
as system-on-a-chip (SoC) or system-on-a-programmable-chip (SoPC). Especially
SoPC systems, where logic functions are realized using programmable logic devices
(PLDs),complex programmable logic devices (CPLDs) or �eld programmable gate
arrays (FPGAs) are very popular nowadays. Such devices compacts all elements
of the design on a single chip that contains built-in logic and dedicated memory
blocks (Altera, 2006; Xilinx, 2000). Therefore, traditional methods of control units
prototyping evolve. One of e�ective methods of the CU realization is an application
of the model of the compositional microprogram control unit (CMCU).

The compositional microprogram control unit is a multi-level device, where
the control unit is decomposed into two main units (�uba, 2005; Baranov, 1994;
Barkalov, 2002). The �rst is responsible for addressing of microinstructions that
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are kept in the control memory. It is a simple �nite-state-machine. The role
of the second part is to hold and generate adequate microinstructions. Such a
solution may lead to minimization of the number of logic elements that are used
for implementation of the CU. Therefore, wider areas of the target device can
be accessed by other modules of the designed system. The CMCU memory can
be implemented using either logic elements or dedicated memory blocks of a chip
(Wi±niewski, 2005; Xilinx, 2004; Altera, 2006).

1.1 The thesis and main goals of the dissertation
This dissertation is focused on proving that the following claim is true: the ap-
propriate modi�cation of traditional structures of the compositional mi-
croprogram control unit permits to decrease the number of logic blocks
that are required for implementation of the controller in the target
FPGA device.

There are two main goals of the dissertation. The �rst goal is to reduce
the number of logic blocks that are required for implementation of the
compositional microprogram control unit in an FPGA. The reduction is
reached trough an application of additional internal blocks of the control unit.

The second aim of the dissertation is to reduce the size of the bit-stream
that is send to the FPGA during the physical implementation of the
compositional microprogram control unit. This task will be solved thanks
to partial recon�guration of programmable devices.

1.2 The structure of the dissertation
The dissertation is divided into eight chapters and two appendices. Chapter 1
presents the thesis and main goals. It outlines the structure of the dissertation.

The work related to the dissertation is reviewed in Chapter 2. Information
about integrated circuits, programmable devices and control units are brie�y de-
scribed.

Functional and structural decomposition of a control units is presented in Chap-
ter 3. Moreover, compositional microprogram control units based on structural
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decomposition are presented in more detail. Most important symbols and abbre-
viations related to the CMCU are de�ned too.

Chapter 4 introduces new synthesis methods of a CMCU implemented in the
FPGA. All proposed methods are based on the CMCU with mutual memory. Each
designing method is presented in detail and illustrated by an example.

Chapter 5 has the structure similar to Chapter 4. New synthesis methods of
the CMCU implemented in the FPGA are presented. However, all the proposed
CMCUs are based on the application of the idea of sharing codes. Each method
is shown in detail and illustrated by an example.

The idea of partial recon�guration of control units implemented in the FPGA
is shown in Chapter 6. First, the mechanism that permits to replace a portion of
the design implemented in the FPGA is brie�y introduced. Next, the traditional
design process of controllers is presented. Furthermore, a new prototyping �ow
based on an application of partial recon�guration of CMCUs implemented in the
FPGA is proposed.

Chapter 7 brie�y describes a tool that was designed for automatic synthesis of
the CMCU (ATOMIC). Main ideas used during implementation of ATOMIC are
presented and reviewed. The tool implements all synthesis algorithms presented
in Chapters 4 and 5. Therefore, its functionality aided the prototyping process of
CMCUs and it was a very important link during experiments.

The most important results of experiments are presented in Chapter 8. The
analysis of gained values was divided into two parts. The �rst deals with the ef-
fectiveness of proposed synthesis methods while the second concentrates on results
achieved during partial recon�guration. A detailed analysis of experimental results
is concluded with an attempt to select a suitable method depending on the initial
description of the controller.

Chapter 9 summarises the dissertation. Conclusions and plans for the future
work are presented.

The structure of ATOMIC is shown in Appendix A. Input and output data
formats are described. Furthermore, all ATOMIC modules are present in detail.

Appendix B describes detailed results of experiments. There are values gained
during the veri�cation of the e�ectiveness of proposed synthesis methods shown.
Moreover, results of partial recon�guration of CMCUs implemented in the FPGA
are presented.



Chapter 2

Related work

2.1 Information about integrated circuits and pro-
grammable devices

2.1.1 Introduction
By the late 1940s the �rst transistor was created as a point-contact device formed
from germanium. Such an invention was a base for the further digital circuits and
programmable devices. In the next decade the development of transistors bene-
�ted with the �rst digital logic gates and circuits classi�ed as the TTL (transistor-
transistor logic). Devices had up to 16 pins and each could perform a simple logic
function (for example the device 7400 contained four 2-input NAND gates, 7404 -
six NOT inverters). Those small circuits were the �rst application speci�c in-
tegrated circuits (ASICs) where logic functions were �xed and unchangeable.
It means that the ASIC contains dedicated logic values and it cannot be recon�g-
ured. Up to the early 1970s ASICs were developed implementing more and more
gates on one chip, however the main problem was �xed logic. Once manufactured
device could not be changed, therefore there was not any possibility to correct any
errors or bugs. The designer could not verify his prototype using the real physical
circuit.

This problem was solved in the 1970s when the �rst programmable devices were
introduced. Those circuits were named programmable logic devices (PLDs).
The PLD was built as a �xed array of AND (OR) functions driving a programmable
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array of OR (AND) functions (Max�eld, 2004). Such a circuit was initially used
to implement the simple combinational logic. Later, the registered and tri-state
outputs were added. At the early 1980s the �rst complex PLD (CPLD) was
presented. Basically the CPLD is an extended version of the PLD; it contains small
PLD blocks linked to the interconnect arrays. CPLDs were highly con�gurable
but it was impossible to implement large and complex functions. Thus in 1984
the �rst �eld programmable gate array (FPGA) was introduced. The device
was made of a matrix of programmable logic blocks. Each logic block contained
3-input look-up table (LUT) that could perform any combinational function.
Additionally, there were simple multiplexer and �ip-�op inside the logic block.

Nowadays, FPGAs are still the best solution for the designers who want to ver-
ify their prototype of the device. However, FPGAs are too slow and too expensive
to compete with ASICs in case of mass-production. On the other hand, features
of FPGAs like partial recon�guration o�er new ideas and new markets for such
devices.

Next subsections describe programmable devices in more detail.

2.1.2 Programmable logic devices (PLDs)
Programmable logic devices can be generally divided into two groups:

• Simple programmable logic devices (SPLD) that refer to the relatively
small programmable devices. Three types of the SPLD: the PROM, the PLA
and the PLA are brie�y described in this subsection.

• Complex programmable logic devices (CPLD) that consist of multiple
smaller devices (like the SPLD). Because of their structure, CPLDs will be
shown in the next subsection in more detail.

The programmable read-only memory (PROM)

The �rst programmable logic device was made as the programmable read-only
memory (PROM). Generally the PROM performs a function of the �xed AND-
array which drives the programmed OR gates (array). The idea of the PROM is
shown in the �g. 2.1 (the device is in the unprogrammed state).
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a b c

x y zv

predefined link

programmable link

Figure 2.1: The unprogrammed PROM device

Here the prede�ned (�xed) AND array has 3 inputs (variables a,b,c) and eight
outputs that are created as all combinations of inputs. Thus outputs of the AND
matrix hold all terms of the input function. The OR-matrix is programmable
and its inputs refer to outputs of the AND-matrix. Programmable links of the OR
array permit to create any sum of the logic terms, therefore any logic function may
be programmed using the AND-OR structure. An example of the programmed
PROM device is shown in the �g. 2.2. The device performs simple combinational
functions of three inputs and four outputs, where:

v = a · b · c + a · b · c,
x = a · b · c + a · b · c, (2.1)
y = a · b · c + a · b · c + a · b · c,
z = a · b · c + a · b · c + a · b · c.
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The AND-array produces the combination of all possible logic terms. Logic
functions v,x,y,z are in fact realised by the OR-array via programmable lines.

Figure 2.2: The programmed PROM device

It is clear that every combination of inputs is always decoded creating a possi-
bility of the usage of all terms of the input function. Therefore, PROMs are useful
for circuits that realise functions with large amount of product terms. The main
problem in PROM-based PLDs is the number of inputs because each additional
input requires twice wider memory volume.

The programmable logic array (PLA)

In the middle of 1970s, the new way of PLDs realisation was invented. In the
programmable logic arrays (PLAs) both matrices: the AND and the OR are
con�gurable. What is the most important, the number of inputs does not in�uence
the number of terms performed by the AND-array. Therefore, the device based
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on the PLA technology could perform functions with relatively higher number of
inputs in comparison to the PROM. An example of the unprogrammed PLA device
is illustrated in the �gure 2.3.

a b c

x y zv

predefined link

programmable link

Figure 2.3: The unprogrammed PLA device

The cost of the device can be reduced by minimization of functions that ought
to be realised (Dagless, 1983; Ciesielski and Yang, 1992; Yang and Ciesielski, 1989;
Sasao, 1988). Because both matrices are programmable, the AND-matrix de�nes
prime implicants while the OR-matrix sums all necessary implicants. Functions
de�ned in the example ( 2.1) can be minimized and represented as:

v = a · b,
x = a · b, (2.2)
y = a · c + b · c,
z = a · c + a · b · c.
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There are only four primary implicants needed to represent all functions. There-
fore, the AND-matrix realises four minterms unlike in the PROM device where all
eight lines were used. Furthermore, the OR-matrix sums the products generated
by the AND-matrix using four programmable lines (�g. 2.4). Additionally, func-
tions y and z use sharing of the minterm ac, thus the size of both matrices is
reduced.

Figure 2.4: The programmed PLA device

The PLA is useful especially for large project where many common implicants
are present in the design. However, because of its structure the PLA was relatively
expensive to manufacture. Furthermore, the device was slow due to propagation
delays that appeared in the programmable links. Therefore, in the late 1970s a
new type of the PLD devices was proposed - the programmable array logic.
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The programmable array logic (PAL)

The structure of the programmable array logic (PAL) is an opposite to the
PROM structure. There is the programmable AND-matrix and the �xed OR-plane
in the PAL device. An example of the unprogrammed PAL circuit is presented in
the �g. 2.5.

a b c

x y zv

predefined link

programmable link

Figure 2.5: The unprogrammed PAL device

In the PAL only the �rst level of the device is con�gurable. Thus, any varia-
tion of input values in the AND-matrix may be de�ned by the designer. Such a
combination creates product terms at outputs of the AND-plane. The OR-matrix
is �xed so it can connect the restricted number of product terms for the reali-
sation of logic functions. The �gure 2.6 shows an exemplary implementation of
functions 2.2. Similarly to the PLA, the AND-matrix is programmed to generate
prime implicants on its outputs. Furthermore the OR-matrix generates proper
functions using �xed OR-lines.
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Figure 2.6: The programmed PAL device

PAL devices are not so �exible in con�guration as PLAs. The structure of the
device ought to be prepared and very often designers use some approaches to omit
the restricted number of product terms that should be OR-ed (Kania, 2004; Kania
and Kulisz, 2007; Hrynkiewicz et al., 1997). The main advantage of PAL devices
in comparison to PLAs is their speed. There is only one programmable matrix
in the PAL, thus the circuit is much faster in comparison with the PLA device.
Another important bene�t is price. Thanks to the low-cost and high speed of PAL
devices became very popular in the late 1970s. However, the development of the
prototyped systems e�ected appearance of the new branch in the programmable
circuits: complex programmable logic devices.
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2.1.3 Complex programmable logic devices (CPLDs)
The complex programmable logic device appeared at the beginning of the 1980s.
The main idea was to connect several small PLD devices to create wider area
for the programmable logic. First CPLDs have 100% connectivity to the inputs
and outputs associated with each block (Max�eld, 2004). Therefore, the inter-
connection array was huge what made the whole device slow and expensive in
production. The solution to this problem was the programmable interconnect
array (PIA). Nowadays each vendor of CPLD devices has its own technology of
CPLDs manufacturing, but the idea is similar: all SPLDs share the common PIA
(Kania, 2004; �uba, 2003; Max�eld, 2004). Figure 2.7 shows the structure of the
typical CPLD device.

Figure 2.7: The CPLD structure
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As it was mentioned, the typical CPLD consists of the programmable intercon-
nect array surrounded by microcells (Kania, 2004; �uba, 2003; Max�eld, 2004).
The macrocell is built from AND-OR matrices (usually small PLDs, like PAL),
programmable �ip-�ops and additional logic elements like multiplexers, OR and
XOR gates. The most popular CPLDs that are currently available on the market
are devices from Altera, Xilinx, Atmel, Lattice, Lucent, Cypres.

2.1.4 Field programmable gate arrays (FPGAs)
The �rst �eld programmable gate array appeared in the middle of the 1980s.
Its structure was di�erent in comparison to the CPLD (Xilinx, 2001; Altera, 2008;
Max�eld, 2004; Jenkins, 1994). The main idea of FPGAs was to use programmable
logic elements for implementation of simple logic functions. Such elements are
called look-up tables (LUT) and can perform any logic function with the speci�c
number of inputs and one output. Early FPGAs contained logic elements that
could perform any logic function up to three inputs and one output. Additionally,
each LUT was connected with a multiplexer and a register which created simpli�ed
programmable logic block. The idea of the early programmable logic block is
illustrated in the �g. 2.8. As it was mentioned, the LUT could be con�gured to
perform any combinational function with three inputs and one output. Sequential
functions also could be realised thanks to the register connected with the LUT.

3-input

LUT
mux

flip-flop

y

q

a

b

c

d

clock

Figure 2.8: The early CLB structure
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To perform functions that require more than one output (or more than three
inputs) more logic blocks were used. Thanks to the structure of the FPGA, logic
blocks are connected via interconnect matrix. Generally, the FPGA was created
as "large number of logic blocks (islands), surrounded by a sea of programmable
interconnections" (Max�eld, 2004).

Nowadays, there are many vendors of FPGA devices. The most popular are
Xilinx, Altera, Lattice, Actel, Atmel. The structure of the FPGA depends on
the vendor, however the idea is the same - usage of the array of logic blocks
based on the LUT and the register. There are di�erent names for logic blocks,
interconnections and other elements of the FPGA because vendors ascribe new
ideas in the branch to their inventions. In the dissertation, the structure of the
FPGA will be described based on the Xilinx devices. Therefore, all references and
information will concern Xilinx FPGAs.

The typical structure of the FPGA from Xilinx is shown in the �g. 2.9. The
main elements of the device are: a matrix of con�gurable logic blocks (CLBs),
con�gurable input/outputs blocks (IOBs) and dedicated memory blocks (BRAMs).
All elements are connected via the programmable interconnect matrix.

B
lo

ck
 R

A
M



CLBs

CLBs

B
lo

ck
 R

A
M



CLBs

B
lock R

A
M



CLBs

B
lock R

A
M



I/O Logic

Figure 2.9: The structure of the typical FPGA device
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The con�gurable logic block (CLB) consist of four logic cells (LCs).
Two logic cells are organized into a slice. Thus each CLB has two similar slices.
Figure 2.10 illustrates the idea of the CLB structure.

LE

mux

LE

slice

LE

mux

LE

slice

mux

Figure 2.10: The structure of the CLB block

The main elements of the logic cell are: four-input and one-output LUT, mul-
tiplexer and �ip-�op. Each family also has the additional logic (like carry logic
for arithmetic operations) however, it is not important for further consideration in
the dissertation. The simpli�ed structure of the LE is presented in the �g. 2.11.
The register can be con�gured either as the �ip-�op or latch. What is important,
the polarity of the clock may be rising-edge or falling-edge. Thus each LE could
be con�gured as the active-low or active-high clock trigger.

The look-up table has four inputs and one output. Therefore it can realise any
logic function that has maximum four input variables. Larger functions ought to
be decomposed and more LUTs (or even slices) have to be used. Additionally,
the look-up table can be con�gured as the 16x1 RAM (random-access memory) or
16-bit shift register.

The main role of the con�gurable input/output block (IOB) is to en-
sure the connectivity beetween the FPGA and other elements of prototyped sys-
tems. Thus very essential fact is the wide variety of the power supply standards
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Figure 2.11: The structure the Logic Element (LE)

(Max�eld, 2004). IOBs are organized into banks (the number of banks depends
on the FPGA). Each bank may be con�gured independently so the designer can
connect to the FPGA other devices, with di�erent input/output standards.

Dedicated memory blocks are very important components of the FPGA.
Nowadays, a lot of designs contain memory that can be implemented with dedi-
cated memory blocks (Bursky, 1999). Each vendor has its own concept of dedicated
memory blocks. In case of Xilinx devices there are Block-RAMs (BRAMs).
Such elements are synchronous, therefore clock signal ought to be delivered. The
number of BRAMs and the number of logic cells per each block depends on the
particular device. BRAMs are organized into columns and each BRAM can be
used separately. The main advantage of BRAMs is their size and recon�gurability.
Depending on the device, there can be stored even up to three mega bits in the
memory (the XC2V8000 device from the Virtex-II family). Additionally, BRAMs
may be very easily recon�gured by the process of partial recon�guration. The
content of one (or more) BRAM is replaced while the rest of the device remains
unchanged. Such a solution reduces the size of the destination bit-stream used to
con�gure the FPGA. Moreover, the designing and con�guration time is highly re-
duced as well. Partial recon�guration of the control units implemented on FPGAs
is described in Chapter 6 in more detail.
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2.2 Control units
A digital system may be represented by a composition of the control unit (CU)
and operational unit (OU) also known as a data-path (Gajski, 1997; De Micheli,
1994; Barkalov and W¦grzyn, 2006). The idea of such a de�ned digital system is
illustrated in the �g. 2.12.

CU OU

DataFunctionI

Y

ResultsO

X

Figure 2.12: The model of the digital system

Based on the set of input values (I) and set of logic conditions (X), the CU sends
proper microoperations (Y) to the OU. Additionally, a set of output values (O) is
generated. The set of inputs (I) and set of outputs (O) are used for communication
with the environment of the digital system (�uba, 2001; Molski, 1986).

The operational unit executes microoperations (Y) by processing proper input
(Data) and generating results (Results). Additionally the OU generates logic
conditions (X) for the control unit.

2.2.1 Single-level control units (�nite state machines)
The most popular realisation of control units nowadays is an �nite state ma-
chine (FSM) also known as the �nite state automaton (�uba, 2003; Baranov,
1994; Barkalov and W¦grzyn, 2006; Traczyk, 1982; Adamski et al., 2007; Adamski
and W¦grzyn, 2003; Adamski, 1980). The FSM is a model of behavior that consists
of the set of states, set of transitions between states and set of actions (microop-
erations). Formally the FSM can be described as a 6-tuple vector:

M =< S, X, Y, f, h, s0 >, (2.3)
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where:

• S = {s0, s1, . . . , sK} is non-empty �nite set of states;

• X = {x0, x1, . . . , xL} is �nite set of inputs;

• Y = {y0, y1, . . . , yN} is �nite set of outputs;

• f : S ×X → S is the transition function, this function determines the next
state ss ∈ S depending on the current state sm ∈ S and on the value of input
xl ∈ X;

• h : S ×X → Y is the output function, this function determines the current
output yn ∈ Y , based on the current state (in case of Moore automaton)
or depending on the current state and the current input (in case of Mealy
automaton);

• s0 ∈ S is the initial state of automaton.

Figure 2.13 shows the typical realization of the �nite state machine (Baranov,
1994; Barkalov and W¦grzyn, 2006). There are two main units in the FSM. The
combinational circuit CC generates proper output values (microinstruction) and
indicates excitation functions for the register RG which is in charge of holding
internal state sm ∈ S of an FSM.

CC
RG

D
X

Q

Y

Figure 2.13: The model of the �nite state machine

The FSM can be realised as Moore or Mealy automaton. If the control unit
is described as Moore FSM, then outputs depend on the current state of the
automaton (Moore, 1956). Microinstruction is represented as:

Yt = f(sm), (2.4)
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where Yt means the value of the output and sm ∈ S represents the current state
of the FSM. The main advantage of such a realisation is simpli�cation of the
behaviour of the control unit. States are clearly tied with the action generat-
ing proper microinstruction while inputs (conditions) in�uence only transitions
between states.

The second way of implementation of the FSM is Mealy automaton (Mealy,
1955). The value of outputs depends not only on the current state but also on
input signals:

Yt = f(sm, X), (2.5)

where X is a set of input values (conditions).
The main bene�t o�ered by Mealy FSM is the reduction of the number of

internal states of the automaton in comparison with Moore FSM. Both Moore and
Mealy automata are classi�ed as single-level control units.

The optimization of the FSM is one of the most popular tasks nowadays.
There are many ideas focused on improving the prototyping process and encod-
ing of internal states of the automaton (Sentovich et al., 1992a; Hrynkiewicz
et al., 1997; Ashar et al., 1990; Ashar et al., 1992; Kubátová, 2005; Perkowski
et al., 2001; Rawski et al., 2003; Barkalov, 1998; Ahmad et al., 2000). Above re-
searches bene�ted in appearance of computer-aided design systems, like Sequential
Circuit Synthesis, SIS (Sentovich et al., 1992b). It contains algorithms for state
assignments (NOVA, JEDI ) and state minimization (STAMINA).

The next subsection deals with microprogram control units where outputs of
the controller are organized in microinstructions.

2.2.2 Microprogram control units
The idea of microprogramming was introduced by M. V. Wilkes in 1951 as an
intermediate level to execute computer program instructions (Wilkes, 1951; Mol-
ski, 1986; Traczyk, 1982; Husson, 1970; Kravcov and Chernicki, 1976; Misiurewicz,
1982; Papachristou, 1979; Stalings, 1996). Microprograms were organized as a se-
quence of microinstructions and stored in the special control memory (CM). The
algorithm for the MCU is usually speci�ed by the �ow-chart (FC) description
(�uba, 2005; Barkalov and W¦grzyn, 2006). Such a �ow-chart algorithm consists
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of four main types of vertices (start, end, operational vertex, conditional vertex)
that are interpreted by the control unit. More information about the �ow-chart
algorithm can be found in Chapter 3.

RAMI
DX

Q

Y
CMASQ

Figure 2.14: The model of the microprogram control unit (MCU)

Typical structure of the MCU is presented in the �g. 2.14. There are three
main blocks that consist of the MCU: a sequencer SQ, a register of the microin-
struction address RAMI and the control memory CM (�uba, 2005; Barkalov and
W¦grzyn, 2006). The sequencer is the combinational circuit that forms the exci-
tation function for the RAMI:

D = f(X, T ). (2.6)

Here X is a set of logic conditions of the system and T is a feedback func-
tion generated by the control memory. Based on this function, the RAMI gen-
erates the proper microinstruction address A. The control memory CM holds
microprogram that is further executed by the operational part of the system.
There are di�erent methods of microinstructions addressing (Barkalov and Pala-
gin, 1997; �uba, 2003), however in most cases the CM also keeps addresses of next
microinstructions that should be executed. The feedback function T is analysed
by the sequencer which based on the condition from the set X selects the proper
address A.

There are many designing ways of the MCU (�uba, 2005; Adamski and Barkalov,
2006). One of the most popular is to perform the sequencer as the multiplexer,
and the RAMI as the counter (�uba, 2005). Then the structure of the MCU may
be interpreted as the system shown in the �g. 2.15.
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Figure 2.15: The model of the microprogram control unit with counter

In the MCU presented in the �g. 2.15, the CM generates two feedback functions
- T for the counter and C for the multiplexer. Such a realisation is especially fruit-
ful in case of long segments (chains) of microinstructions (�uba, 2001). Then the
chain of microinstructions that are not separated by the condition may be replaced
by one state (block). Chapter 3 deals with the usage of chains of microinstructions
in more detail.

The main advantage of the microprogram control unit is simplicity of its struc-
ture. Outputs of the controller are organized in microinstructions and they can
be easily replaced. Additionally, the control memory may be implemented using
dedicated memory blocks of the FPGA reducing the area of used logic elements.

Apart from its bene�ts, the MCU has some disadvantages. The control memory
holds not only microoperations but also information for calculation of the address
of the next microinstruction. Very often the size of the control memory exceeds
the size of the dedicated memory block of an FPGA. To eliminate these disad-
vantages, the control unit may be decomposed and designed as a Compositional
Microprogram Control Unit (CMCU).



Chapter 3

Compositional microprogram
control units

Any �ow-chart of algorithm can be interpreted as the compositional microprogram
control unit (Barkalov, 2002). In the CMCU the control unit is decomposed into
two main parts. The �rst is responsible for addressing microinstructions that are
kept in the control memory. The role of the second part is to hold and generate
adequate microinstructions.

The control unit may be decomposed in two ways. The �rst one is functional
decomposition. Here the controller is decomposed basing on its internal func-
tions and states. The second method is structural decomposition where the
task of the decomposition is reached thanks to the modi�cation of the structure of
the control unit. Both ideas of the decomposition of the control unit lead to the
compositional microprogram control unit.

3.1 Functional decomposition of control units
Functional decomposition is the process that splits the complex function into the
smaller sub-functions (Kania et al., 2005; �uba, 2005; Devadas et al., 1988; Sasao,
1999; McCluskey, 1986; Rawski et al., 2005b; Scholl, 2001). Such a realisation is
often used as a part of logic synthesis of designs implemented with programmable
devices. Functional decomposition is widely expanded especially by academic or-
ganizations (Sentovich et al., 1992b; Kania and Kulisz, 2007; Kania, 2007; �uba
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et al., 2002; Rawski et al., 2001). The dissertation focuses on the decomposition
of control units implemented on the FPGA. Optimization of SPLDs and CPLDs
can be found in (Kania, 2004; Kania, 1999; Ciesielski and Yang, 1992; Devadas
et al., 1988; Devadas et al., 1989; Muthukumar et al., 2007; Sasao, 1999; Sasao,
1999; Sentovich, 1993; Solovjev, 1996).

In the FPGA, the limited number of inputs and only one output of LUT el-
ements make functional decomposition very e�ective (Scholl, 2001; �uba, 2005;
Rawski et al., 2003; �ach et al., 2003; Pasierbi«ski and Zbysi«ski, 2001). The idea
of functional decomposition is widely used either by commercial (Xilinx, Altera,
Synplicity, etc.) and non-commercial organisations (Universities). It should be
pointed out that the best results are achieved by non-commercial projects such as
DEMAIN (Technical University of Warsaw) or SIS (University of Berkeley).

Functional decomposition may be realised as serial decomposition or par-
allel decomposition. In the �rst one, the set X of input variables is split into
two subsets U and V (�uba, 2003).

G

H

U V

Z

Y=F(X)

Figure 3.1: The idea of serial functional decomposition

The set V forms inputs for the function G which generates the set of outputs
Z=G(V ). Of course the method has sense only if the number of outputs of the
function G is fewer than the number of its inputs. Furthermore, outputs Z gener-
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ated by G and the set U form inputs for the function H ( 3.1). Finally, function
F is represented as follows:

F = H(U,G(V )). (3.1)

The aim of parallel decomposition is to decompose the initial function F into
two separate sub-functions G and H (�uba, 2005). The main idea is to split the
set of outputs Y into two subsets YG and YH . Here Y is the set of outputs of the
function F . Similarly YG is the set of outputs of the function G and YH - the set
of outputs of H. The method has sense if either one of functions G or H has fewer
input variables than the initial function F . The idea of parallel decomposition is
illustrated in the 3.2.

F

X

Y
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YG

XG

H

YH

X
H

Figure 3.2: The idea of parallel functional decomposition
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Serial and parallel decompositions are very often combined. Balanced de-
composition joins both methods (�uba, 2005; Rawski et al., 2005a; Selvaraj and
Luba, 1995). The whole process may be divided into steps. In each step either
serial or parallel decomposition is performed. The process is repeated until the
satisfactory result is reached (�uba, 2005).

Presented methods of decomposition are fruitful for combinational blocks of the
system. However they can also be used in decomposition of control units (�uba,
2005; Rawski et al., 2003; Borowik, 2004; Borowik, 2005). The controller may be
realised as the sequential circuit shown in the �g. 3.3. The main idea is to use the
control memory to hold microinstructions. Such a memory is implemented with
dedicated memory blocks of the FPGA, which reduces the logic resources of the
device.

Figure 3.3: The control unit realised as the sequential circuit

Each microinstruction of the control unit presented in the �g. 3.3 consists of two
�elds. The �rst one holds the code Q of internal states of the automaton, while the
second contains output variables from the set Y . The next state of the controller
is determined by input variables X and by the current state of the control unit.
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The width of the address of the control memory may be calculated as |A|=n+p,
where n means the number of the input variables and p represents the number
of bits that are used for encoding internal states of the controller (�uba, 2005).
The volume of the control memory depends on the width of its address. Each
additional bit doubles the volume of the memory. Thus, very often such a volume
exceeds the volume of dedicated memory blocks of the FPGA. The solution to this
problem may be functional decomposition of the control unit (�g. 3.4).
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Figure 3.4: Functional decomposition of the control unit

In the system shown in the �g. 3.4 the control memory is decomposed into two
parts: block of the address modi�cation (CAM) and smaller memory that may be
realised using the dedicated memory block of the FPGA. There are many variants
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of such a decomposition (Rawski et al., 2003; Borowik, 2004; Borowik, 2005). The
main aim of all methods is to decrease the size of the control memory using the
minimum number of logic blocks of the FPGA.

The main bene�t of the functional decomposition of the control unit is very
high e�ectiveness. The memory may be decomposed in such a way that dedicated
memory blocks of the FPGA are used to the maximum. In the other words the
minimum number of logic blocks are used to realise the circuit of the address
modi�cation. On the another hand, only a part of a microinstruction is held in
the memory after the decomposition. Therefore, there is no possibility to apply the
idea of partial recon�guration which can signi�cantly accelerate the prototyping
process of the control unit (Chapter 6).

3.2 Structural decomposition of control units
This section deals with structural decomposition of control units and it is an
introduction to the main part of work presented in the dissertation. Thus, the idea
of CMCUs created as structural decomposition of the controller will be described
in more details. The section presents main de�nitions and base structure of the
CMCU, which was inspiration and motivation of a PhD Thesis. Next sections
show Author's methods of CMCUs synthesis, however all structures are based on
ideas shown below.

3.2.1 Main de�nitions
This section introduces some de�nitions that will be needed later in order to de-
scribe the CMCU more formally.

Let the control algorithm (De Micheli, 1994) of a digital system (Adamski and
Barkalov, 2006; Barkalov and W¦grzyn, 2006; Gajski, 1997) be represented as the
�ow-chart Γ (Baranov, 1994) with a set of operational vertices B = {b1, . . . , bK}
and a set of edges E. Each vertex bk ∈ B contains microoperations Y (bk) ∈ Y ,
where Y = {y1, . . . , yN} is the set of microoperations. Each conditional ver-
tex of the �ow-chart contains one element from the set of logic conditions X =

{x1, . . . , xL}.
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De�ninition 3.1. The operational linear chain (OLC) of the �ow-chart Γ is
a �nite sequence of operational vertices αg = 〈bg1, . . . , bgFg〉 such that for any pair
of adjacent components of the vector αg there is an edge 〈bgi, bgi+1〉 ∈ E, where i

is the number of the component in the vector αg (i = 1, . . . , Fg − 1).

De�ninition 3.2. The vertex bq ∈ B is called as an input of the OLC αg if
there is the edge 〈bt, bq〉 ∈ B, where bt is either initial or conditional vertex of the
�ow-chart Γ or operational vertex that does not belong to the OLC αg.

De�ninition 3.3. The vertex bq ∈ B is named as an output of the OLC αg

if there is the edge 〈bq, bt〉, where bt is either conditional or �nal vertex of the
�ow-chart Γ or operational vertex that does not belong to the OLC αg.

De�ninition 3.4. The parameter M1 is equal to the number of vertices in the
longest OLC αg of the �ow-chart Γ.

De�ninition 3.5. The minimum number of bits required to encode the variable
M1 is represented as R1 and it is equal to: R1 = dlog2M1e.
De�ninition 3.6. The parameter M2 is equal to the number of all operational
chains presented in the �ow-chart Γ.

De�ninition 3.7. The minimum number of bits required to encode the variable
M2 is represented as R2 and it is equal to: R2 = dlog2M2e.
De�ninition 3.8. The parameter M3 is equal to the number of all operational
vertices in the �ow-chart Γ. This parameter also indicates the total number of
microinstructions of the CMCU.

De�ninition 3.9. The minimum number of bits required to encode the variable
M3 is represented as R3 and it is equal to: R3 = dlog2M3e.

3.2.2 The CMCU with base structure
Let Dg be a set of operational vertices that are included in the chain αg. Then let
C = {α1, . . . , αG} be a set of OLCs of the �ow-chart Γ satis�ed to the condition:

Dg ∩Dq = Ø (g 6= q; g, q ∈ {1, ..., G});
B = D1 ∪D2 ∪ ... ∪DG;

Dg 6= Ø (g = 1, ..., G).

(3.2)
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Let natural addressing of microinstructions be executed for each αg:

A(bgi+1) = A(bgi) + 1 (i = 1, ..., Fg−1), (3.3)
where A(bg) is an address of the microinstruction corresponding to the vertex
bg ∈ B. In this case the �ow-chart Γ can be interpreted as a CMCU with base
structure denoted in future as the CMCU UBS (�g. 3.5).

CC
CT

RG

CM

T

D
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Q

Y

X

y0

Figure 3.5: The compositional microprogram control unit with base structure

There are four main modules in the CMCU UBS: the combinational circuit
CC, the register RG, the counter CT and the control memory CM. The combina-
tional circuit and the register represent the simpli�ed FSM of microinstructions
addressing S1. Furthermore, the counter and the control memory form the micro-
program control unit S2. The RG keeps a code K(am) of the current state sm ∈ S

of the CMCU, where S={s1, . . . , sM} is a set of internal states. The register has
dlog2M2e �ip-�ops and their outputs qr ∈ Q are used to encode states sm ∈ S,
here Q={q1, . . . , qR2}, |Q| = R2. The transition from the state sm ∈ S to the state
ss ∈ S is executed by switching the register from the code K(am) to the code
K(as). Such a switching is determined by the excitation function Qr ∈ Q. The
CT keeps the address A(bt) of the microinstruction Y (bt) that is executed by a
data-path (Barkalov, 2002). Variables ar ∈ A are used for the representation of
the addresses A(bk). Microinstructions are kept in the CM having 2R1 words. Each
word (microinstruction) has N+2 bits in a case of one-hot encoding of microopera-
tions (Barkalov et al., 2005e; Barkalov and Wi±niewski, 2004a). One of additional
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bits is used to keep an variable y0 to organize the mode of addressing (3.3). The
second bit keeps a variable yK to terminate the fetching of microinstructions from
the control memory (to clarify CMCUs structures, yK is not marked in �gures
presented in the dissertation).

The presented CMCU UBS operates in the following manner: at the begin-
ning the register is set to the value that corresponds to the initial state of the
FSM. Similarly, the counter is set to the address of the �rst microinstruction. If
transitions are executed inside the OLC αg ∈ C, then y0 = 0 which causes the in-
crement of the CT and forbids changing the state of the CMCU. When the output
of the OLC αg ∈ C is reached then y0 = 1 and the combinational circuit forms
the excitation function for the register setting it into the proper state (Barkalov
and Wi±niewski, 2004b; Barkalov et al., 2004; Barkalov and Wi±niewski, 2004d).
Similarly the counter is set with the proper value as well:

D = f(Q,X), (3.4)

T = f(Q,X). (3.5)

Here X means the set of conditions, Q is the set of internal variables used to encode
the current state of the CMCU, D is a set of variables that form an excitation
function for the register D={d1, . . . , dR2} and T is a set of variables that form an
excitation function for the counter T={t1, . . . , tR1}.

Functions (3.4) and (3.5) form a code K(sm) of the state of the transition
in the register and an address of the input of the next OLCαg ∈ C. If the CT
contains the address of the microinstruction Y (bk) such as 〈bk, bE〉 ∈ E, then
yK = 1. In this case the operation of the CMCU UBS is �nished (Barkalov and
Wi±niewski, 2004f; Barkalov and Wi±niewski, 2004c; Barkalov et al., 2005a).

The main bene�t of the realisation of the controller as the compositional mi-
croprogram control unit UBS is a possibility of implementation of the circuit CM
using dedicated memory blocks (Wi±niewski, 2005). Other blocks of the proto-
typing system UBS are implemented with the logic blocks (�ip-�ops and LUT
elements) of the FPGA (�uba, 2003; Xilinx, 2005; Altera, 2008). Such an idea
lead to reduction of the number of logic blocks in comparison with the realisation
of the controller as a traditional �nite state machine and thus, the designer can
allocate wider area of the FPGA for another blocks of the prototyping system.
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The e�ectiveness of the CMCU is especially high if the controller interprets the
linear �ow-chart. Such �ow-chart contains 75% of operational vertices or includes
long linear chains (segments) of operational vertices.

The second advantage of the CMCU is possibility of selecting the implemen-
tation method of the control memory. The designer can decide if the circuit CM
should be realised with logic blocks or with dedicated memory blocks. It is impor-
tant especially in case of designs, which consumes large area of the memory. Then
the whole CMCU is implemented with logic blocks of the FPGA.

In opposition to functional decomposition, structural decomposition of a con-
trol unit permits to apply the idea of partial recon�guration (Wi±niewski, 2005;
Barkalov et al., 2006; Mesquita et al., 2003). In this case, only a part of the con-
troller (the control memory) can be replaced while the rest of the system remains
untouched. Partial recon�guration of control units implemented in the FPGA is
widely described in Chapter 6.

3.3 Conclusions
There were two ideas of the decomposition of control units presented in this Chap-
ter. The aim of both methods is to decompose the controller into two main mod-
ules. The �rst is in charge of addressing microinstructions that are hold in the
control memory. Functional decomposition of the CU bases on the realisation of
circuit addressing using divisions of Boolean functions. In structural decomposi-
tion additional internal blocks are added to the structure of the control unit.

The idea of structural decomposition of the control unit presented in this Chap-
ter was a base for development of the new synthesis methods of the CMCU. In
the (Barkalov, 2002) Professor A. Barkalov introduced two new signi�cant ways
of the control units: the CMCU with mutual memory and the CMCU with shar-
ing codes. The aim of both methods was to reduce the number of logic blocks
required for implementation of the controller. Experiments showed that either
implementation of the CMCU with mutual memory or the CMCU with sharing
codes instead of the traditional CMCU with base structure, bene�ted with less
area usage of programmable devices (Barkalov and W¦grzyn, 2006; Adamski and
Barkalov, 2006; Barkalov, 2002). However, thanks to the modi�cation in the struc-
ture, there is still a possibility to reduce the number of logic blocks required for
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implementation of the controller. Thus, both methods - the CMCU with mutual
memory and the CMCU with sharing codes - were an inspiration for researches of
new designing ways of control units. Six new structures and synthesis methods of
the CMCU are shown in the dissertation. All presented methods are divided into
two parts. The �rst group is based on the CMCU with mutual memory and it
is described widely in Chapter 4. The second group is based on the CMCU with
sharing codes and it is shown in the Chapter 5.



Chapter 4

Compositional microprogram
control units with mutual memory

This Chapter deals with the compositional microprogram control unit with mutual
memory. The main idea is to recognize each operational linear chain by an address
generated by the counter. Now the code produced by the counter indicates the
current state of the control unit. Therefore, usage of the register in the CMCU
with mutual memory is unnecessary.

The �rst section describes the traditional synthesis method of the CMCU with
mutual memory that was initially proposed by in (Barkalov and Palagin, 1997).
Next sections show three new synthesis methods of the CMCU with mutual mem-
ory. The main idea was to reduce the number of logic blocks (especially LUT
elements) that are required for implementation of the system in the FPGA.

4.1 The CMCU with mutual memory
The structure of the CMCU UMM with mutual memory is presented in the �g.
4.1. There are three main blocks in the CMCU UMM : the combinational circuit
CC, the counter CT and the control memory CM (Barkalov et al., 2005b).

Distinct from the CMCU UBS with base structure, in the CMCU UMM the
combinational circuit generates the excitation function only for the counter:

T = f(X, A), (4.1)
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Figure 4.1: The structure of the CMCU with mutual memory

where X means the set of conditional vertices and A means the code that is de-
termined by the counter. Such a code is also the address of the microinstruction
that is kept in the control memory. The number of logic functions is decreased
in comparison with the CMCU UBS, because the circuit CC doesn't generate the
excitation function for the register. Thus the number of logic blocks of the desti-
nation programmable device is reduced (Adamski and Barkalov, 2006; Wi±niewski
and Barkalov, 2007; Barkalov et al., 2006c; Wi±niewski et al., 2007).

4.1.1 The main idea of the method
In the CMCU UMM transitions between internal states of the controller are per-
formed in the di�erent way than it is in the CMCU with base structure. Here
the address generated by the counter is used to recognize the proper state of the
control unit.

The controller operates as follows: at the beginning, the counter is set to the
value that corresponds to the initial state of the FSM which is equal to the address
of the �rst microinstruction. If transitions are executed inside the αg ∈ C, then
y0 = 0. It causes the incrementation of the CT and forbids to change the current
state of the control unit. When the output of the αg ∈ C is reached, y0 = 1 and the
circuit CC forms the excitation function for the counter (4.1). This function forms
the code K(ss) of the state of transition and the address of the input of the next
OLC αg ∈ C as well. If the controller reaches an address of the microinstruction
Y (bk) such as 〈bk, bE〉 ∈ E, then yK = 1. In this case, operation of the CMCU
UMM is �nished.
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4.1.2 Synthesis of the CMCU with mutual memory
The method of synthesis of the CMCU with mutual memory includes the following
steps:

1. Formation of the set of OLCs. At the beginning, the set of operational
linear chains is created. For each OLC all outputs and inputs are determined.
This step is executed according to the de�nition 3.2 and 3.3.

2. Formation of the content of the control memory. In order to perform
the formation of the content of the control memory, microinstructions and
their addresses ought to be encoded. In case of the CMCU UMM the natural
binary codes will be used. Next the control memory is formed. Each mi-
croinstruction consists of all (N) microoperations that belong to the initial
�ow-chart and two additional bits: y0 and yK (value 1 means that microoper-
ation belongs to the microinstruction). Therefore, the volume of the control
memory can be calculated as SCM=(N+2)∗2R1 , where R1 is the width of the
microinstruction address generated by the counter.

3. Formation of the transition table of the CMCU UMM , formation
of the excitation function for the counter. At this stage, the table of
transitions between the OLCs is created. The table contains the following
columns: Og,SA(Og),Xh,I t

j ,K(I t
j),T ,h, where:

• Og is the output from which the transition is executed;

• SA(Og) is the address of the output Og;

• Xh is the input signal causing the transition < Og, I
j
t > and it is equal

to the conjunction of the elements from the set X;

• I t
j is the input of the destination chain, αj ∈ C, where the transition is
executed;

• K(I t
j) is the address of the input I t

j ;

• T is the set of variables that form the excitation function for the counter;

• h is the number of the transition (h=1, . . . , H).
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Based on this table the excitation function T for the counter is formed:

Tr =
H∨

h=1

CrhE
h
g Xh (r = 1, . . . , R1). (4.2)

Here Crh is a Boolean variable that is equal to 1, if and only if the function
Tr is written in the h-th line of the table of transitions; Eh

g is a conjunction
of internal variables Ar ∈ A corresponding to the address SA(Og) of the
output Og from the h-th line of the table of transitions.

4. Implementation of the CMCU UMM . The controller may be imple-
mented on the FPGA in two ways. The �rst one is to realize the control
memory with dedicated memory blocks of programmable devices. Such a so-
lution permits to decrease the number of used logic blocks of the FPGA. The
second way is to implement the whole system using logic blocks of the device.
This option is applied usually if the size of the control memory exceeds the
size of available dedicated memory blocks of the FPGA.

4.1.3 Example of the synthesis method of the CMCU UMM

To bring closer the idea of the CMCU with mutual memory, the synthesis method
of such a controller will be illustrated by a simple example. Figure 4.2 illustrates
the hypothetical algorithm of the control unit U1. There are eleven operational
B = {b1, . . . , b11} and three conditional X = {x1, x2, x3} vertices in the �ow-chart
Γ1. Thus, the circuit should generate eleven microinstructions that consist of �ve
microoperations Y = {y1, . . . , y5}.

In order to design the CMCU with mutual memory, �rst the set C of operational
linear chains ought to be formed (�g. 4.3). In the presented example there are four
OLCs C = {α1, α2, α3, α4}, where α1 = 〈b1, b2〉, α2 = 〈b3, . . . , b7〉, α3 = 〈b8, b9〉,
α4 = 〈b10, b11〉. All OLCs except α2 have one input: for α1 it is vertex b1, for
α3 - b3 and for α4 - b4. The OLC α2 has two inputs: vertex b3 and vertex b6.
Therefore the set of inputs contains �ve elements: I = {I1

1 , I
1
2 , I

2
2 , I

1
3 , I

1
4}, where

I1
1 = b1, I1

2 = b3, I2
2 = b6, I1

3 = b8, I1
4 = b10. Each OLC may have only one output,

thus there are four outputs in the set of OLCs: O = {O1, . . . , O4}, where O1 = b2,
O2 = b7, O3 = b9, O4 = b11.
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Figure 4.2: The �ow-chart Γ1

In the next step of the designing process, the content of control memory should
be formed. To perform this task addresses of all microinstructions have to be
encoded. In case of control unit with mutual memory the encoding method is
not important, therefore according to the (3.3) natural binary codes will be used.
There are eleven operational vertices in the �ow-chart Γ1, so microinstructions
will be encoded using four bits. In the presented example microinstructions are
addressed as follows: A(b0) = 0000, A(b1) = 0001, . . ., A(b11) = 1010.
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Figure 4.3: The OLCs �ow-chart of the CMCU U1

Each microinstruction executed in the vertex bk consists of microoperations
that are written in this vertex. There are two additional microoperations that
are necessary for proper functionality of the CMCU: y0 and yK . The �rst one is
set (y0=1) if vertex bk belongs to the set of outputs O. In other cases y0 = 0.
In the proposed example, y0 will be produced by vertices b2, b7, b9 and b11. The
microoperation yK is equal to 1 only if vertex bk is connected with the �nal vertex
of the �ow-chart. For the �ow-chart Γ1, yk will be set only in the vertex b7.

Next, microinstructions are encoded and the table of control memory is formed.
Table 4.1 shows the content of the CM of the control unit U1.

To determine the excitation function T for the counter, the table of transitions
of the CMCU U1 should be formed. This table describes transitions between all
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Table 4.1: The content of the control memory of the CMCU U1

Vertex Address Microinstruction Comment
y0 y1 y2 y3 y4 y5 yK

b1 0000 0 1 1 0 0 0 0 I1
1

b2 0001 1 0 0 1 1 0 0 O1

b3 0010 0 0 1 1 0 0 0 I1
2

b4 0011 0 1 0 0 1 0 0 �
b5 0100 0 0 0 0 0 1 0 �
b6 0101 0 1 0 1 0 0 0 I2

2

b7 0110 1 0 1 1 0 1 1 O2

b8 0111 0 1 1 0 0 0 0 I1
3

b9 1000 1 1 0 1 0 1 0 O3

b10 1001 0 0 0 1 1 0 0 I1
4

b11 1010 1 1 0 1 0 0 0 O4

operational linear chains depending on input values (set of operational vertices
X). In the presented example, the table of transitions has H = 8 lines (tab. 4.2).

Table 4.2: The table of transitions of the CMCU U1

Og

SA(Og)
Xh I t

j

K(I t
j) T h

a4 a3 a2 a1 t4 t3 t2 t1

O1 0 0 0 1 x1 I1
2 0 0 1 0 t2 1

O1 0 0 0 1 x1 x2 I1
3 0 1 1 1 t3 t2 t1 2

O1 0 0 0 1 x1 x2 I1
4 1 0 0 1 t4 t1 3

O2 0 1 1 0 � � - - - - � 4
O3 1 0 0 0 x3 I2

2 0 1 0 1 t3 t1 5
O3 1 0 0 0 x3 I1

1 0 0 0 0 � 6
O4 1 0 1 0 x3 I2

2 0 1 0 1 t3 t1 7
O4 1 0 1 0 x3 I1

1 0 0 0 0 � 8
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Based on the address SA(Og) (which is represented by the set of variables
A = {a1, . . . , a4}) and on the set of conditional vertices X the excitation function
T for the counter is formed:

t4 = a4· a3· a2· a1·x1· x2,

t3 = a4· a3· a2· a1·x1· x2 + a4· a3· a1·x3,

t2 = a4· a3· a2· a1· (x1 + x1·x2),

t1 = a4· a3· a2· a1·x1 + a4· a3· a1· x3.

(4.3)

Now the CMCU U1 can be easily prototyped using hardware description lan-
guages like Verilog (Lee, 1999; Thomas and Moorby, 2002) or VHDL (Bibilo,
1999; Brown and Vernesic, 2000; P¦cheux et al., 2005; Salcic, 1998; Skahill et al.,
1996; Zwoli«ski, 2003). Based on this description the CMCU can be logically
synthesised and �nally implemented in the FPGA. Chapters 7 and 8 deal with
the description of the CMCU in HLDs and implementation of the CMCU in the
FPGAs in more detail.

4.1.4 Summary
In this section the synthesis method of the CMCU with mutual memory was
described in detail. The presented example was prepared and implemented us-
ing the real FPGA device (XC2VP30 from Xilinx, Virtex-II Pro family). Figure
4.4 presents the simpli�ed technological schematic of the controller. Initially the
schematic was generated after the logic synthesis, by the Xilinx XST tool. It was
modi�ed to clarify the logic structure of the circuit U1. Here 10 LUTs, that corre-
sponds to the combinational circuit were replaced by one block. Similarly 4 LUTs
and 4 �ip-�ops that form counter are represented by further two blocks. The FDC
is a Xilinx primitive, and it represents a D-type �ip-�op with asynchronous reset.
Additionally, main nets were named (in the example T , A) to show the similarity
to the logic schematic.

There are two blocks of the CMCU U1 that are synchronous: the counter
and the control memory. Therefore the clock signal Clk ought to be delivered
to such modules. The counter is triggered by the rising edge of the clock signal.
However, because of feedback signals, the control memory is active on the falling
edge of the Clk. Now an address of a microinstruction is formed on a positive edge,
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while outputs are generated when the negative edge of a clock signal occurs. Of
course critical timing paths should be checked to avoid timing skews in the circuit
(placement and timing paths are automatically veri�ed by Xilinx tools during
logical implementation of the design).

10 LUTs
T

Reset

Clk

X

Y1 BRAM

Clr

Clk

A
4 LUTs 4 FDCs

Clr
Clk

y
0

Figure 4.4: Technological structure of the CMCU U1

The realization of the CMCU U1 took 14 LUT elements and 1 dedicated mem-
ory block of the FPGA resources. In comparison, the controller prepared as a tra-
ditional �nite-state-machine required 14 LUT elements and 1 dedicated memory
block as well (here microinstructions were also implemented using the dedicated
memory). Such a simple example shows that the controller designed as the CMCU
with mutual memory may not give better results than the equivalent FSM-based
circuit.

Achieved results of more tests (presented in Chapter 8 in detail) showed that
for controllers that interprets linear �ow-chart, the CMCU with mutual memory
requires less logic blocks than traditional FSM. However, the bene�t is very small
(about 3%) and such results were an inspiration for searching new designing ideas of
control units. The aim of all researches was to reduce the number of logic elements
that are required in order to implement the controller using programmable devices.
Next sections present Author's synthesis methods of compositional microprogram
control units. All methods shown in this Chapter are based on the modi�cation
in the structure of the CMCU UMM .
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4.2 The CMCU with function decoder
The microprogram control unit with function decoder UFD is an extended structure
of the CMCU with mutual memory (Wi±niewski and Barkalov, 2007; Barkalov
et al., 2007b). In comparison to the controller UMM there is additional circuit
(function decoder, FD) introduced. Figure 4.5 illustrates the CMCU with function
decoder.

CC CT CMT
A

Y

X

FD
Z

y
0

Figure 4.5: The structure of the CMCU with function decoder

The main idea of the method is to reduce the number of logic blocks of the
destination FPGA due to the usage of additional block (function decoder) which
may be implemented using dedicated memories. Therefore, fewer LUT elements
are used during the realisation of the control unit in comparison with the CMCU
with mutual memory.

4.2.1 The main idea of the method
In the CMCU UFD variables that form excitation function for the counter are
encoded with the minimum number of bits. To solve this task all inputs of op-
erational linear chains ought to be encoded. Now the circuit CC generates the
function Z:

Z = f(X, A). (4.4)
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Function Z contains encoded addresses E(I) of all inputs in the set of OLCs.
They are further decoded by the circuit FD which indicates the proper code for
the counter:

T = f(Z). (4.5)
The number of bits that are required to encode all inputs can be calculated as

RZ = dlog2MZe, where MZ = |I| is equal to the number of all inputs in the set of
OLCs.

Presented solution permits to reduce the number of outputs generated by the
circuit CC. Additional block of the function decoder is implemented with dedicated
memories of FPGAs. Therefore, the number of logic elements that are needed to
implement whole controller is reduced.

4.2.2 Synthesis of the CMCU with function decoder
The designing method of the CMCU UFD includes the following steps:

1. Formation of the set of OLCs, encoding their inputs and microin-
structions addresses. Formation of the set of OLCs is executed in the
same manner as it was shown during synthesis of the CMCU with mutual
memory. Next, addresses A of all microinstructions are calculated. The
encoding style is not important, so natural binary codes may be used. Fi-
nally, addresses K(I t

j) of all inputs of the set of OLCs are encoded with the
minimum RZ number of bits. Now each input has the unique code E(I t

j).

2. Formation of the control memory content. According to the addresses
calculated in the previous stage, the content of the control memory is formed.
As it was mentioned, the encoding style is not important here.

3. Formation of the table of the CMCU transitions and formation of
the excitation function for the function decoder. This table is a base
for formation of the system (4.4) and synthesis of the circuit CC. This table
contains only transitions for such OLCs that αg ∈ C ′, where C ′ ⊂ C. Subset
C ′ contains OLCs αg ∈ C if their outputs are not connected with the �nal
vertex of the �ow-chart. The transition table contains the following columns:
Og,SA(Og),Xh,I t

j ,E(I t
j),Z,h. Here:
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• Og is the output from which the transition is executed;
• SA(Og) is the address of the output Og;
• Xh is the input signal causing the transition < Og, I

j
t > and it is equal

to the conjunction of the elements from the set X;
• I t

j is the input of the chain αj ∈ C to which the transition is executed;
• E(I t

j) is the encoded address of the input I t
j ;

• Z is the set of variables that form the excitation function for the function
decoder;

• h is the number of the transition (h=1, . . . , H).

Based on the transition table, the excitation function Z can be determined.
The system (4.4) is represented as:

Zr =
H∨

h=1

CrhF
h
g Xh(r = 1, . . . , R1), (4.6)

where Crh is a Boolean variable that is equal to 1, if and only if the function
Zr is written in the h-th line of the table of transitions; F h

g is a conjunction
of internal variables Ar ∈ A corresponding to the address SA(Og) of the
output Og from the h-th line of the table of transitions.

4. Formation of the truth table of the function decoder. Based on the
code E(I t

j), function decoder generates the proper address K(I t
j) of the OLC

input. The set of addresses K(I t
j) form the excitation function T for the

counter. The table of function decoder contains the following columns I t
j ,

K(I t
j), E(I t

j), T , m:

• I t
j is the input of the chain αj ∈ C;

• E(I t
j) is the encoded address of the input I t

j ;
• K(I t

j) is the code of the input I t
j ;

• T is the set of variables that form the excitation function for the counter;
• m is the consecutive line in the truth-table of the function decoder

(m=1, . . . , M).
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Based on this table, the circuit of the function decoder can be implemented
with dedicated memory blocks. The code E(I t

j) forms inputs and K(I t
j)

forms outputs of the function decoder. The volume of the memory that
is required for implementation of the function decoder can be calculated
as SFD=R1∗2RZ , where R1 counts the number of variables that form the
excitation function for the counter and RZ means the number of bits that
are required for the OLCs inputs encoding.

5. Implementation of the CMCU UFD. The memory of the controller is
implemented with dedicated memory blocks. However, in case of the CMCU
UFD the circuit of function decoder may be realised with dedicated memory
blocks as well. In comparison to the CMCU UMM , the number of output
variables and the excitation function generated by the circuit CC is reduced.
Because the circuit FD is implemented as the memory, the total number of
logic blocks that is used for implementation of the controller may highly be
reduced. The gain mainly depends on the total number of all inputs in the
set of OLCs (see Chapter 8).

4.2.3 Example of the designing method of the CMCU UFD

To demonstrate the designing method of the CMCU UFD with function decoder,
the �ow-chart Γ1 will be used as a description of the exemplary controller U2. As it
was shown in the section 4.1.3 there are four OLCs: C = {α1, α2, α3, α4}. The cir-
cuit should generate eleven microinstructions that consist of �ve microoperations
Y ={y1, . . . , y5}.

According to the synthesis rules of the CMCU with function decoder all OLCs
inputs ought to be encoded. There are �ve inputs therefore the minimum number
of bits that are needed for encoding is RZ = 3. In the presented example natural
binary code will be used and inputs will be encoded as follows: E(I1

1 ) = 000,
E(I2

1 ) = 001, E(I2
2 ) = 010, E(I1

1 ) = 011, E(I1
1 ) = 100.

In the second step the content of the control memory is formed. This stage is
performed in the same way as it was shown in the section 4.1.3 (the content of the
CM is shown in the tab. 4.1).

Next the table of transitions of the CMCU U2 is prepared. The table is similar
to the table shown in 4.2 but now all inputs of OLCs are encoded (tab. 4.3).
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Table 4.3: The table of transitions of the CMCU U2

Og

SA(Og)
Xh I t

j

E(I t
j) Z h

a4 a3 a2 a1 z3 z2 z1

O1 0 0 0 1 x1 I1
2 0 0 1 z1 1

O1 0 0 0 1 x1 x2 I1
3 0 1 1 z2 z1 2

O1 0 0 0 1 x1 x2 I1
4 1 0 0 z3 3

O2 0 1 1 0 � � - - - � 4
O3 1 0 0 0 x3 I2

2 0 1 0 z2 5
O3 1 0 0 0 x3 I1

1 0 0 0 � 6
O4 1 0 1 0 x3 I2

2 0 1 0 z2 7
O4 1 0 1 0 x3 I1

1 0 0 0 � 8

Based on the table of transitions, the excitation function Z for the circuit FD
is formed:

z3 = a4· a3· a2· a1·x1·x2,

z2 = a4· a3· a2· a1·x1·x2 + a4· a3· a1·x3,

z1 = a4· a3· a2· a1· (x1 + x1·x2).

(4.7)

In order to decode the proper excitation function for the counter, the table of
function decoder has to be prepared. Table 4.4 shows the content of the function
decoder of the CMCU U2.

Table 4.4: The table of the function decoder of the CMCU U2

I t
j

E(I t
j) K(I t

j) T m
z3 z2 z1 t4 t3 t2 t1

I1
1 0 0 0 0 0 0 0 � 1

I1
2 0 0 1 0 0 1 0 t2 2

I2
2 0 1 0 0 1 0 1 t3 t1 3

I1
3 0 1 1 0 1 1 1 t3 t2 t1 4

I1
4 1 0 0 1 0 0 1 t4 t1 5
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The circuit FD may be implemented either using dedicated memories or with
logic blocks of the FPGA as well. In case of realisation with LUT elements,
additionally the excitation function T is formed:

t4 = z3· z2· z1,

t3 = z3· z2,

t2 = z3· z1,

t1 = z3· z2 + z3· z2· z1.

(4.8)

Finally, the CMCU U2 may be implemented in the FPGA. As it was mentioned
an additional module of the function decoder may be realized either with dedicated
memory blocks or LUT elements of the programmable device.
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Figure 4.6: Technological structure of the CMCU U2

Figure 4.6 shows the schematic of the CMCU U2. The usage of function decoder
permitted to decrease the number of LUT elements to 11. It means that the area
used by logic blocks of the circuit U2 was reduced 21% compared to the CMCU
U1.

There is an additional synchronous component in the CMCU U2 in comparison
to the CMCU U1. The function decoder is implemented with dedicated memory
blocks of an FPGA and it should be triggered by a clock signal. Therefore the
FD is active on a positive edge, while the counter is synchronized with the falling
edge of a Clk. Finally the control memory is triggered by a positive clock signal.
Such a solution ensures proper functionality of the controller. On the other hand
it should be emphasised, that microinstructions are formed by a half clock pulse
later in comparison to the CMCU U1.
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4.2.4 Summary
The CMCU with function decoder was presented in the section. Here the excitation
function for the counter was decoded on the minimum number of bits, thus the
number of logic elements that are used to realize the circuit CC is reduced. The
additional block - function decoder - may be realized with dedicated memory blocks
of the FPGA. Such a solution preserves additional area of logic elements of the
programmable device.

Detailed experiments showed that realization of the controller with
application of the CMCU with function decoder reduces the number of
used LUT elements average by 19% (see Chapter 8 for more detail).

4.3 The CMCU with outputs identi�cation
The structure of the CMCU UOI with outputs identi�cation is illustrated by the
�g. 4.7. The main idea is to use the part of the address A for the identi�cation of the
internal states of the control unit. Now the set of variables Q (Q ⊂ A) represents
the code of the current state of the controller (Wi±niewski et al., 2007; Barkalov
and Wi±niewski, 2005c).

CC CT CM
T A

Y

X

Q

y0

Figure 4.7: The structure of the CMCU with outputs identi�cation

4.3.1 The main idea of the method
In the CMCU UOI the set of feedback variables A that are used for the identi-
�cation of the current state of the controller is reduced to the minimum. Out-
puts of the operational linear chains may be recognized using ROI bits thanks
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to the special encoding of microinstructions (Wi±niewski et al., 2006a; Barkalov
et al., 2007a; Barkalov et al., 2006a; Barkalov and Wi±niewski, 2005b; Wi±niewski,
2006a). Therefore, the combinational circuit generates the function T for the
counter (Wi±niewski et al., 2006a; Barkalov et al., 2006b):

T = f(X, Q), (4.9)

where Q ⊆ A, |Q| = ROI , Q = {Q1, . . . , QROI
}.

4.3.2 Synthesis of the CMCU with outputs identi�cation
The synthesis of the CMCU with mutual memory includes the following steps:

1. Formation of the set of OLCs. The set of operational linear chains is
created. For each OLC its output and all inputs are determined. According
to de�nitions 3.4 and 3.6 there are M2 operational linear chains and the
length of the longest is speci�ed by the M1 value. The total number of
microinstructions is equal to M3 (see de�nition 3.8).

2. Addressing of microinstructions and encoding of OLCs outputs.
Let Q ⊆ A be a set of variables that are su�cient for one-to-one identi�cation
of the OLC αg ∈ C and ROI = |Q|. Microinstructions addressing of the
CMCU is executed in a following manner:

(a) At the beginning all microinstructions are encoded using natural binary
codes.

(b) The value of ROI is set to ROI = R2, where R2=dlog2M2e.
(c) The table of addressing is created. The table has 2ROI columns marked

by ROI major address bits and 2R3−ROI lines marked by R3−ROI junior
address bits. Here R3=dlog2M3e.

(d) If outputs of two di�erent OLCs αi, αj ∈ C are situated in the same
column and both outputs are not connected with the �nal vertex of the
�ow-chart then the information is shifted to the right starting from the
�rst vertex of the OLC αj (j>i). The releasing cells of the table are
�lled by symbols "∗" . This operation is performed until outputs Oi

and Oj will be in di�erent columns of the table.
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(e) If outputs of all OLCs have one-to-one identi�cation by ROI bits then
the algorithm moves on to the point (g).

(f) If the address of any vertex is beyond the actual addressing space then
ROI := ROI + 1. Next the algorithm is repeated from the point (c).

(g) End.

Finally all microinstructions are encoded. Now the code of each microin-
struction is formed as a concatenation of major (columns) and minor (lines)
addresses of created table. Outputs of OLCs are encoded using only major
bits of the address. Such an encoding will be further used in the formation
of the transitions table of the CMCU.

For better understanding, presented algorithm of microinstructions address-
ing will be illustrated later by an example.

3. Formation of the control memory content. The content of the control
memory is formed. Addresses of microinstructions are created according to
the algorithm presented in the previous step.

4. Formation of the transitions table of the CMCU UOI, formation
of the excitation function for the counter. At this stage the table
of transitions between OLCs is created. The table contains the following
columns: Og,MA(Og),Xh,I t

j ,K(I t
j),T ,h, where:

• Og is the output from which the transition is executed;

• MA(Og) is the major part of an address of the output Og, this address
was calculated at the stage 2;

• Xh is the input signal causing the transition < Og, I
j
t > and it is equal

to the conjunction of the elements from the set X;

• I t
j is the input of the chain αj ∈ C where the transition is executed;

• K(I t
j) is the address of the input I t

j ;

• T is the set of the variables that form the excitation function for the
counter;

• h is the number of the transition (h=1, . . . , H).
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Based on this table the excitation function T for the counter is formed:

Tr =
H∨

h=1

CrhE
h
g Xh(r = 1, . . . , ROI). (4.10)

Here Crh is a Boolean variable that is equal to 1 if and only if the function
Tr is written in the h-th line of the table of transitions; Eh

g is a conjunction
of internal variables Qr ∈ Q corresponding to the address MA(Og) of the
output Og from the h-th line of the table of transitions.

5. Implementation of the CMCU UOI. This step is executed in the same
manner as it was shown during the designing process of the CMCU UMM .
The combinational circuit and the counter are implemented using LUT el-
ements while the control memory is realised with dedicated memory blocks
of FPGAs.

4.3.3 Example of the synthesis of the CMCU with outputs
identi�cation

To bring closer the idea of the OLCs encoding, the designing process of the CMCU
UOI with outputs identi�cation will be illustrated by an example. Once more the
�ow-chart Γ1 will be used as the initial description of the controller U3. As it
was shown in the subsection (4.1.3), there are M3 = 11 operational vertices and
M2 = 4 operational linear chains. The longest OLC is α2 and it contains M1 = 5

elements. According to the algorithm of microinstructions addressing, the initial
value of the variable ROI is equal to R2=dlog2M2e = 2. Thus at the beginning,
the table of addressing has 2ROI = 2 columns and 2R3−ROI = 2 lines (�g. 4.8).

Initially all addresses of microinstructions are encoded in natural binary code.
In the presented example outputs O3 of α3 and O4 of α4 are located in the same
column. Because neither O3 nor O4 are connected with the �nal vertex of the
�ow-chart Γ1, thus all components that have higher addresses than the output
O3 are shifted. This movement is performed while the output O4 is in the same
column as O3.
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Figure 4.8: The initial table of addressing

Figure 4.8 presents the table after the shift operation. Now each OLC output
is situated in the di�erent column and there are no vertices beyond the addressing
space. It means that all addresses are encoded and the algorithm is �nished.
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Figure 4.9: The table of addressing after shift operations
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The table of encoding shows that each OLC output may be recognized using
|Q| = 2 major bits, where the set Q is the subset of A and contains only variables
Q = {a3, a4}. Now OLCs outputs are encoded as follows: K(O1) = 00, K(O2) =

01, K(O3) = 10, K(O4) = 11. The presented algorithm of encoding is used during
creation of the control memory. Addresses of microinstructions are formed as
concatenations of major (columns) and minor (lines) bits of the table of addressing.
The content of the control memory is presented in the table 4.5.

Table 4.5: The control memory content of the CMCU U3

Vertex Address Microinstruction Comment
y0 y1 y2 y3 y4 y5 yK

b1 0000 0 1 1 0 0 0 0 I1
1

b2 0001 1 0 0 1 1 0 0 O1

b3 0010 0 0 1 1 0 0 0 I1
2

b4 0011 0 1 0 0 1 0 0 �
b5 0100 0 0 0 0 0 1 0 �
b6 0101 0 1 0 1 0 0 0 I2

2

b7 0110 1 0 1 1 0 1 1 O2

b8 0111 0 1 1 0 0 0 0 I1
3

b9 1000 1 1 0 1 0 1 0 O3

b10 1011 0 0 0 1 1 0 0 I1
4

b11 1100 1 1 0 1 0 0 0 O4

In the next step, the table of transitions of the CMCU U3 is created. The
table is similar to the table that was created for the CMCU with mutual memory,
however now there are only two major bits of the address used as the OLC output
identi�cation (tab. 4.6).



4.3 The CMCU with outputs identi�cation 59

Table 4.6: The transitions table of the CMCU U3

Og

MA(Og)
Xh I t

j

K(I t
j) T h

a4 a3 t4 t3 t2 t1

O1 0 0 x1 I1
2 0 0 1 0 t2 1

O1 0 0 x1 x2 I1
3 0 1 1 1 t3 t2 t1 2

O1 0 0 x1 x2 I1
4 1 0 1 1 t4 t2 t1 3

O2 0 1 � � - - - - � 4
O3 1 0 x3 I2

2 0 1 0 1 t3 t1 5
O3 1 0 x3 I1

1 0 0 0 0 � 6
O4 1 1 x3 I2

2 0 1 0 1 t3 t1 7
O4 1 1 x3 I1

1 0 0 0 0 � 8

Based on the address MA(Og) (represented by the set of variables Q = {a3, a4})
and on the set of conditional vertex X, the excitation function T for the counter
is formed:

t4 = a4· a3·x1· x2,

t3 = a4· a3·x1· x2 + a4·x3,

t2 = a4· a3,

t1 = a4· a3·x1 + a4·x3.

(4.11)

Now the CMCU U3 can be prototyped using HDL languages. The excita-
tion function T contains fewer variables and shorter equations in comparison to
the excitation function formed for the controller with mutual memory (see 4.8).
Therefore it is expected that the CMCU U3 should consume fewer logic elements
than the CMCU U1. Implementation of the controller in the FPGA showed that in
fact, the CMCU U3 with output identi�cation requires 11 LUT elements (�g. 4.10),
which means the reduction by 21% in comparison to the CMCU U1 with mutual
memory.
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Figure 4.10: Technological structure of the CMCU U3

4.3.4 Summary
The CMCU with outputs identi�cation was described in this section. The main ad-
vantage of the presented solution is reduction of the number of variables that keep
the actual code of the state of the controller. Thus, the number of logic elements
of the FPGA is reduced in comparison with the traditional CMCU with mutual
memory. It should be pointed out that special addressing of microinstructions is
required. Therefore additional designing step has to be performed in comparison
to the synthesis process of the CMCU UMM .

4.4 The CMCU with outputs identi�cation and
function decoder

The CMCU UOD with outputs identi�cation and function decoder (�g. 4.11) is
a conjunction of two structures presented in previous sections. There is a spe-
cial addressing of microinstructions used in the CMCU UOD. Moreover, maximal
encoding of the set of variables A is performed as well.

4.4.1 The main idea of the method
To improve the reduction of LUT elements of the implementation of
CMCUs UFD and UOI , both methods may be combined. Now the combinational
circuit generates the excitation function Z for the circuit FD:
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Figure 4.11: The structure of the CMCU with outputs identi�cation and function
decoder

Z = f(X, Q), (4.12)

where X means the set of input variables of the CMCU (conditional vertices) and
Q ⊆ A is a feedback function generated by the counter. The function decoder
generates proper addresses of microinstructions:

T = f(Z), (4.13)

where T means the set of variables that form the excitation function for the counter.

4.4.2 Synthesis of the CMCU with outputs identi�cation
and function decoder

The designing method the CMCU UFD includes the following steps:

1. Formation of the set of OLCs and encoding their inputs. This step is
executed by the same procedure as it was described in the section of synthesis
of the CMCU with function decoder. All inputs of OLCs are encoded with
the minimum RZ number of bits, so each input has the unique code E(I t

j).

2. Addressing microinstructions and encoding OLCs outputs. Ad-
dresses of microinstructions are represented using the algorithm shown in
the previous section. Outputs of OLCs are encoded using only major bits
of addresses. Such an encoding will be further used in the formation of the
table of transitions of the CMCU.
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3. Formation of the control memory content. According to addresses cal-
culated in the previous stage, the content of the control memory is prepared.

4. Formation of the transitions table of the CMCU and formation
of the excitation function for the function decoder. The table of
transitions is the base for formation of the system (4.12) and synthesis of
the circuit CC. This table contains only transitions for such OLCs that their
outputs are not connected to the �nal vertex of the �ow-chart. The table
of transitions contains the following columns: Og,MA(Og),Xh,I t

j ,E(I t
j),Z,h.

Here:

• Og is the output from which the transition is executed;

• MA(Og) is the major part of an address of the output Og, this address
was calculated at the stage of microinstruction addressing;

• Xh is the input signal causing the transition < Og, I
j
t > and it is equal

to the conjunction of the elements from the set X;

• I t
j is the input of the chain αj ∈ C to which the transition is executed;

• E(I t
j) is the address of the input I t

j ;

• Z is the set of the variables that form the excitation function for the
function decoder;

• h is the number of the transition (h=1, . . . , H).

Now, according to the (4.6), the set of variables Z can be formed.

5. Formation of the table of the function decoder. This step is executed
in the same manner as during the designing of the CMCU with function
decoder (see section 4.2).

6. Implementation of the CMCU UOD. The main advantage of the CMCU
with outputs identi�cation and function decoder is a possibility to imple-
ment both blocks - FD and CM - with dedicated memory blocks. Moreover,
thanks to outputs identi�cation the number of feedback functions for the
combinational circuit decreases in comparison to the CMCU UMM . There-
fore, implementation of the CMCU UOD consumes the least logic elements
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of programmable devices in comparison with CMCUs UMM , UFD and UOI .
However, it should also be pointed out, that presented controller uses at least
two dedicated memory blocks of the FPGA.

4.4.3 Example of synthesis of the CMCU with outputs iden-
ti�cation and function decoder

To illustrate the synthesis of the CMCU UOD, the �ow-chart Γ1 will be used as
the initial description of the controller. The prototyping process of the CMCU U4

with outputs identi�cation and function decoder is a conjunction of the designing
of CMCUs U2 and U3. At the beginning, the set of OLCs is formed and all OLCs
inputs are encoded. As it was presented in previous sections, there are four OLCs
which have �ve inputs. Thus OLCs inputs may be encoded using |Z|=3 bits. In
the presented example natural binary code will be used: E(I1

1 )=000, E(I2
1 )=001,

E(I2
2 )=010, E(I1

1 )=011, E(I1
1 )=100.

At the next stage, addressing microinstructions and encoding OLCs outputs
should be performed. According to the algorithm presented in the subsection 4.3.2,
microinstructions corresponding to vertices b1,. . . ,b9 are addressed consecutively in
natural binary code: A(b1)=0000, A(b2)=0001, A(b3)=0010,. . . , A(b9)=1000. Ad-
dresses of two last microinstructions are shifted, thus their codes are A(b10)=1011

and A(b11)=1100. Outputs of OLCs are encoded with |Q|=2 major bits of an
address, therefore MA(O1)=00, MA(O2)=01, MA(O3)=10, MA(O4)=11. The
content of the control memory is identical to the CMCU U3 shown in the previous
section (tab. 4.5).

Next the transition table of the CMCU is prepared. The table contains tran-
sitions from the output Oi (which is encoded using Q ⊂ A bits) to the input
I t
j (which is encoded using Z bits). Table 4.7 shows the transition table for the
CMCU U4.

From the table of transitions the excitation function Z for the function decoder
is formed:

z3 = a4· a3·x1·x2,

z2 = a4· a3·x1·x2 + a4·x3,

z1 = a4· a3· (x1 + x1·x2).

(4.14)
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Table 4.7: The table of transitions of the CMCU UOD

Og

MA(Og)
Xh I t

j

E(I t
j) Z h

a4 a3 z3 z2 z1

O1 0 0 x1 I1
2 0 0 1 z1 1

O1 0 0 x1·x2 I1
3 0 1 1 z2 z1 2

O1 0 0 x1·x2 I1
4 1 0 0 z3 3

O2 0 1 � � - - - � 4
O3 1 0 x3 I2

2 0 1 0 z2 5
O3 1 0 x3 I1

1 0 0 0 � 6
O4 1 1 x3 I2

2 0 1 0 z2 7
O4 1 1 x3 I1

1 0 0 0 � 8

In the last step the table for function decoder is formed. For the CMCU U4,
this table is identical as it was presented during synthesis of CMCU U2 (tab. 4.4).
Finally, the controller may be designed with HDL languages and implemented
in the programmable device. Figure 4.12 shows the technological schematic of
realisation of the CMCU U4 in the FPGA. As it was expected, the CMCU U4

took the fewest logic blocks of the device between all CMCUs presented in this
Chapter. Conjunction of the OLCs output identi�cation and application of the
function decoder resulted in reduction of used LUT elements to 10. This means
that the initial CMCU with mutual memory was decreased by 26%.
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Figure 4.12: Technological structure of the CMCU U4
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4.4.4 Summary
This section presented the designing method of the CMCU UOD with outputs iden-
ti�cation and function decoder. The main idea was to use special identi�cation of
OLCs outputs what resulted in reduction of the size of the internal feedback func-
tion. Additionally, the application of the function decoder permitted to decrease
the number of outputs of the combinational circuit to reduce �nally the number of
used LUT elements of the destination FPGA device. Detailed experiments showed
that the designing method of the CMCU UOD always gives better results than the
CMCU with mutual memory, average by 32% (see Chapter 8 for more detail).

4.5 Conclusions
There were four designing methods of the CMCU with mutual memory presented
in this Chapter. The �rst one was initially proposed by prof. Alexander Barkalov
and it was the inspiration for further methods. The main idea was to reduce the
number of logic blocks that are required to implement the CMCU in the FPGA.

The CMCU UFD includes new block - function decoder. Now the excitation
function for the counter is encoded with the minimum number of bits. The ad-
ditional circuit is realised with dedicated memory blocks of the FPGA, thus the
application of the function decoder reduces the total number of LUT elements in
comparison to the CMCU UMM . Experiments showed that application of the func-
tion decoder may be ine�ective. Such a situation may happen when the initial-�ow
chart contains many short OLCs. It should also be pointed out that the CMCU
with function decoder usually consumes 19% less of LUT elements compared to
the traditional CMCU with mutual memory.

The reduction of the number of variables that keep actual state of the con-
troller was introduced in the CMCU UOI with outputs identi�cation. Here special
encoding of microinstructions is used and each OLC output has the unique code
that usually (but not always - it depends on the structure of the �ow-chart that
describes the controller) requires fewer bits than in the traditional CMCU with
mutual memory. Experiments showed that the CMCU with OLCs outputs identi-
�cation consumes fewer LUTs than CMCU with mutual memory by 14%.
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The last presented solution of the CMCU designing combines two methods of
synthesis. In the CMCU UOD with outputs identi�cation and function decoder the
excitation function for the counter is encoded and special addressing of microin-
structions is performed as well. As it was expected, such a solution gained the
best results of all CMCUs presented in this Chapter. The CMCU UOD always
requires fewer LUT elements than CMCUs UMM and UFD. It is also almost
always better than CMCU UOI (in 98% cases). The area used by CMCU with
outputs identi�cation and function decoder is on average 32% smaller
than traditional CMCU with mutual memory.

Detailed interpretation of results of experiments are presented in Chapter 8.
Next Chapter shows four alternative methods of the CMCU designing where the
idea of sharing codes is used.



Chapter 5

Compositional microprogram
control units with sharing codes

This Chapter refers to synthesis methods of a CMCU with sharing codes. The aim
of proposed structures is to determine the microinstruction address by both codes
generated by the counter and by the register.

In the �rst section, the traditional synthesis method of the CMCU USC with
sharing codes is presented. The structure of the CMCU USC was proposed by
prof. A. Barkalov in (Barkalov and Palagin, 1997). Next sections deal with three
new methods of synthesis of the CMCU with sharing codes. The aim of proposed
methods is di�erent. The �rst - the CMCU with sharing codes and function
decoder - concentrates on the reduction of logic blocks of the FPGA. The aim of
the second designing method (the CMCU with address converter) is to reduce the
width of the control memory address and thus the volume of the memory. This
method is very useful if the volume of the control memory exceeds the volume
o�ered by the dedicated memory blocks of the FPGA. The third method mixes
the usage of address converter and function decoder.

5.1 The CMCU with sharing codes
Figure 5.1 shows the CMCU USC with sharing codes (Barkalov and Wi±niewski,
2004e; Wi±niewski, 2004; Wi±niewski, 2006b; Wi±niewski et al., 2006c). The main
idea is to use both codes generated by the counter and by the register to form
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the microinstruction address. Therefore, the number of variables that are used for
encoding of the excitation functions for the counter is reduced in comparison to
the CMCU UBS.

CC
CT

RG

CM

T

D

A

Q

Y

X

y0

Figure 5.1: The structure of the CMCU with sharing codes

In the CMCU with sharing codes the microinstruction address A (bt) is repre-
sented as a concatenation (Barkalov and Palagin, 1997):

A (bt) = K (αg) ∗K (bt) . (5.1)

Here K (αg) is a code of the OLC αg ∈ C with R2=dlog2M2e bits, where M2

de�nes the number of OLCs in the initial �ow-chart Γ; K (bt) is a code of a
component of the OLC αg ∈ C corresponding to the vertex bt ∈ B. Code K (bt)

has R1=dlog2M1e bits, where M1 is equal to the maximum amount of components
in the OLC αg ∈ C. Sign (∗) in (5.1) is used for concatenation operation.

5.1.1 The main idea of the method
In the CMCU USC the combinational circuit CC generates excitation functions for
the counter CT and for the register RG:

T = f(X, Q), (5.2)

D = f(X, Q). (5.3)



5.1 The CMCU with sharing codes 69

The RG is in charge of holding the code of the current OLC. Additionally
it generates an upper part of the microinstruction address. The CT keeps only
the number of the active component (block) in the current OLC. Therefore it
determines the lower part of the microinstruction address.

5.1.2 Synthesis of the CMCU with sharing codes
The designing method of the CMCU USC includes the following steps:

1. Formation of the set of OLCs, encoding OLCs and their compo-
nents. Based on de�nitions 3.2 and 3.3, the set of operational linear chains
is formed. Next, OLCs are encoded. Each OLC forms the code K (αg). Fi-
nally all components in OLCs are encoded with the code K (bt). Both, the
OLC and its components are encoded with natural binary code.

2. Addressing microinstructions and formation of the control mem-
ory. The microinstruction address is determined as concatenation of the
code of the OLC and its component, according to the (5.1). Then, the con-
tent of the control memory is formed. The volume of the control memory
can be calculated as SCM=(N+2)∗2R1+R2 , where R1 is the size of the code
generated by the counter and R2 is the size of the code generated by the
register.

3. Formation of the transitions table of the CMCU and formation of
excitation functions for the counter and for the register. This table
is the base for the formation of system functions (5.2 and 5.3) and synthesis
of the circuit CC. The table of transitions contains the following columns:
αg,K(αg),Xh,αt,K(αt),bj,K(bj),D,T ,h. Here:

• αg is the OLC from which the transition is executed;
• K(αg) is the code of the OLC αg;
• Xh is the input signal causing the transition and it is equal to the

conjunction of elements from the set X;
• αt is the destination OLC where the transition is executed;
• K(αt) is the code of the OLC αt;
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• bj is the destination component in the OLC αt where the transition is
executed;

• K(bj) is the code of the component bj;

• D is the set of variables that form an excitation function for the register;

• T is the set of variables that form an excitation function for the counter;

• h is the number of the transition (h=1, . . . , H).

Based on this table, the excitation function T for the counter is formed:

Tr =
H∨

h=1

TrhE
h
g Xh(r = 1, . . . , R1). (5.4)

Here Trh is a Boolean variable that is equal to 1 if and only if the variable Tr

is written in the h-th line of the table of transitions; Eh
g is the conjunction

of internal variables Qr ∈ Q corresponding to the code K(αg) from the h-th
line of the table of transitions.

Similarly the excitation function D for the register is determined:

Dr =
H∨

h=1

DrhF
h
g Xh(r = 1, . . . , R2), (5.5)

where Drh is a Boolean variable that is equal to 1 if and only if the variable
Dr is written in the h-th line of the table of transitions; F h

g is the conjunction
of internal variables Qr ∈ Q corresponding to the code K(αg) from the h-th
line of the table of transitions.

4. Implementation of the CMCU USC. Three modules of the CMCU USC

- the combinational circuit, the counter and the register - are implemented
with logic blocks of the destination programmable device. The control mem-
ory may be realized in two ways, with dedicated memory blocks or with logic
elements as well.
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5.1.3 Example of synthesis of the CMCU with sharing codes
To bring closer the idea shown in this section, the designing method of the CMCU
U5 with sharing codes will be illustrated by the example. Let use the description of
the controller presented in the �g. 5.2. There are 13 operational and 2 conditional
vertices in the �ow-chart Γ2.

Figure 5.2: The �ow-chart Γ2

According to the designing rules de�ned in the previous subsection, initially
the set of operational linear chains ought to be formed. In the presented exam-
ple there are three OLCs: C={α1, α2, α3}. Here α1=〈b1, . . . , b3〉, α2=〈b4, . . . , b7〉,
α3=〈b8, . . . , b13〉. All OLCs except α2 have one input: for α1 it is vertex b1 while
for α3 - b8. The OLC α2 has two inputs: vertex b4 and vertex b7. There are three
outputs in the set of OLCs O={O1, O2, O3}, where O1=b3, O2=b7, O3=b13. The
set of operational linear chains is shown in the �g. 5.3.
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Figure 5.3: The OLCs �ow-chart of the CMCU U5

Operational linear chains and their components are encoded using natural bi-
nary codes. There are M2=3 OLCs thus R2=dlog2M2e=2 bits will be used for en-
coding: K(α1)=00, K(α2)=01, K(α1)=10. To encode OLCs components, �rstly
the length M1 of the longest OLC ought to be determined. For the presented
example α1 contains M1=3 components, α2 includes M2=4 vertices and α3 has
M3=6 blocks. Thus the longest OLC is α3 with M1=M3 and it is equal to 6. It
means that OLCs components will be encoded using R1=dlog2M1e=3 bits. Table
5.1 illustrates the encoding of OLCs and their components.

The address of each microinstruction is formed as concatenation of both codes:
A(bt)=K(αg) ∗ K(bt). In the presented example, vertex b1 has the address
A(b1)=K(α1) ∗ K(b1)=00000. Vertex b9 is encoded as A(b9)=K(α3)∗K(b9)=10001
and so on. Such encoding is necessary during formation of the control memory
content (tab. 5.2).

In order to form excitation functions for the counter and for the register, the
transition table of the CMCU ought to be prepared. The table is presented in the
tab. 5.3.
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Table 5.1: Encoding of OLCs and their components of the CMCU U5

αg K(αg) bt K(bt)
Address

K(αg) ∗K(bt)

α1 00
b1 000 00 000
b2 001 00 001
b3 010 00 010

α2 01

b4 000 01 000
b5 001 01 001
b6 010 01 100
b7 011 01 101

α3 10

b8 000 10 000
b9 001 10 001
b10 010 10 010
b11 011 10 011
b12 100 10 100
b13 101 10 101

The transitions table is the base for formation of the excitation function D for
the register. OLCs are encoded with R2=2 bits, thus two variables ought to be
calculated from the tab. 5.3:

d2 = q2· q1·x1·x2,

d1 = q2· q1· (x1 + x1·x2).
(5.6)

Similarly, the excitation function T for the counter is formed:

t3 = 0,

t2 = t1 = q2· q1·x1· x2).
(5.7)

Finally, the CMCU U5 is designed using hardware description languages. The
control memory is realised using dedicated memory blocks of the FPGA. Figure 5.4
shows the logic schematic of the prototyped controller. Similarly to the technolog-
ical schematic of CMCUs with mutual memory presented in the previous Chapter,
the combinational circuit is implemented with LUTs, the counter is formed from
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Table 5.2: The content of the control memory of the CMCU U5

Vertex Address Microinstruction Comment
y0 y1 y2 y3 y4 y5 yK

b1 00000 0 1 1 0 0 0 0 I1
1

b2 00001 0 0 0 1 1 0 0 �
b3 00010 1 0 0 0 0 1 0 O1

b4 01000 0 0 1 0 0 1 0 I1
2

b5 01001 0 1 0 0 0 0 0 �
b6 01010 0 0 0 1 0 1 0 �
b7 01011 1 1 0 0 1 0 1 I2

2 O2

b8 10000 0 1 0 1 0 0 0 I1
3

b9 10001 0 0 0 0 0 1 0 �
b10 10010 0 0 0 0 1 0 0 �
b11 10011 0 0 1 0 0 0 0 �
b12 10100 0 0 0 1 0 1 0 �
b13 10101 1 1 1 0 0 0 1 O3

Table 5.3: The table of transitions of the CMCU U5

αg

K(αg)
Xh αt

K(αt)
bj

K(bj)
D T h

q2 q2 d1 d1 t3 t2 t1

α1 0 0 x1 α2 0 1 b4 0 0 0 d1 � 1
α1 0 0 x1x2 α2 0 1 b7 0 1 1 d1 t2 t1 2
α1 0 0 x1 x2 α3 1 0 b8 0 0 0 d2 � 3

LUTs and FDC �ip-�ops, and the control memory is realised as a BRAM. Addi-
tionally, the register is implemented with FDCE blocks. Such elements are D-type
�ip-�ops with clock enable and asynchronous clear.



5.1 The CMCU with sharing codes 75

6 LUTs 2 FDCEs
D

A

Reset

X

Q

3 LUTs
T

Y

Clk

3 FDCs

y0

Clr
Clk

CE

Clr
Clk

1 BRAM

Clr

Clk

Figure 5.4: Technological structure of the CMCU U5

5.1.4 Summary
The designing method of the CMCU with sharing codes was presented in this
section. The prototyping process of the exemplary CMCU U5 was shown to bring
closer presented ideas. Implementation of such an exemplary controller in the
FPGA resulted in two main facts that should be pointed out.

Firstly, the realisation of the CMCU U5 took 9 LUT elements. Detailed exper-
iments showed that realisation of the controller as the CMCU with sharing codes
is almost always better than realisation as a traditional FSM. However, in this
particular case the FSM also requires 9 LUT elements of the FPGA. Achieved re-
sults were inspiration for researching new methods (modi�cations) of the presented
solution.

Another very important fact is volume of the control memory of the CMCU U5.
There are 13 microinstructions, thus the minimum width of the address is equal
to 4. Each microinstruction contains 7 microoperations (see tab. 5.2). Therefore
expected volume of the memory is equal to SCM=7*24=112. On the other hand,
the CMCU U5 requires 5 bits to encode addresses of microinstructions thus the
total volume of the memory took 224 bits. Of course, such a small example does not
in�uence device resources because the area o�ered by one dedicated memory block



5.2 The CMCU with sharing codes and function decoder 76

of the FPGA (in this case Xilinx Virtex-II Pro family) is much larger. However,
the volume of the dedicated memory block is limited, therefore method of sharing
codes may be ine�ective because the control memory ought to be decomposed.
Application of the address converter solves this problem (Wi±niewski et al., 2006b).
The additional block determines the microinstruction address, which is encoded
with the minimum number of bits.

Next sections present new structures of the CMCU with sharing codes. All
methods are based on the traditional CMCU USC . The main goal of proposed
methods is to reduce the number of logic elements that are used for implementation
of the controller, however in the CMCU with address converter, the reduction of
the volume of the control memory is performed as well.

5.2 The CMCU with sharing codes and function
decoder

The CMCU USD with sharing codes and function decoder is shown in the �g. 5.5.
The main idea is to reduce the number of outputs of the combinational circuit
thanks to the encoding of the excitation functions for the counter and the register.
Therefore, the number of logic blocks required for implementation of the CMCU
is reduced. The additional block - function decoder - decodes and sends proper
values for the counter and for the register. Function decoder can be implemented
with dedicated memory blocks.

FD
CT

RG

CM

T

D

A

Q

Y

X

y0

CC
Z

Figure 5.5: The CMCU with sharing codes and function decoder
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5.2.1 The main idea of the method
In the CMCU USD, the set of variables that form the excitation function T for
the counter and the set of variables that form the excitation function D for the
register are encoded. Similarly to the CMCUs UFD and UOF shown in the previous
Chapter, all inputs of the set of OLCs are encoded. The combinational circuit
generates the excitation function Z for the function decoder:

Z = f(X, Q). (5.8)

Function Z contains encoded addresses Q of all inputs I in the set of OLCs.
They are further decoded by the circuit FD which indicates the proper code for
the counter and for the register:

T = f(Z), (5.9)

D = f(Z). (5.10)

5.2.2 Synthesis of the CMCU with sharing codes and func-
tion decoder

The method of synthesis of the CMCU USD includes the following steps:

1. Formation of the set of OLCs, encoding OLCs inputs and their
components. First, the set of OLCs is formed. Then, similarly to the
synthesis of the CMCU USC all OLCs and their components are encoded.
Additionally, each input I is encoded with natural binary codes. Finally,
each input has the unique code K(I t

j).

2. Addressing microinstructions and the control memory formation.
The microinstruction address is determined as concatenation of the code of
the OLC and its component, according to the (5.1). Then the content of the
control memory is formed.

3. Formation of the transitions table of the CMCU and formation of
the excitation function for the function decoder. This table is a base
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for the formation of the function (5.8) and synthesis of the circuit CC. The ta-
ble of transitions contains the following columns: αg,K(αg),Xh,I t

j ,K(I t
j),Z,h.

Here:

• αg is the OLC from which the transition is executed;
• K(αg) is the code of the OLC αg;
• Xh is the input signal causing the transition and it is equal to the

conjunction of the elements from the set X;
• αt is the destination OLC where the transition is executed;
• I t

j is the input of the chain αj ∈ C to which the transition is executed;
• K(I t

j) is the address of the input I t
j ;

• Z is the set of variables that form an excitation function of the function
decoder;

• h is the number of transition (h=1, . . . , H).

Based on this table, the excitation function Z for the function decoder is
formed:

Zr =
H∨

h=1

TrhE
h
g Xh(r = 1, . . . , R2), (5.11)

where Trh is a Boolean variable that is equal to 1 if and only if the variable
Tr is written in the h-th line of the table of transitions; Eh

g is the conjunction
of internal variables Qr ∈ Q corresponding to the code K(αg) from the h-th
line of the table of transitions.

4. Formation of the table of the function decoder. Based on the code of
each input, function decoder generates excitation functions for the counter
and for the register. The table of the function decoder contains the following
columns I t

j , K(I t
j), αt,K(αt),bj,K(bj),T ,D,m:

• I t
j is the input of the chain αj ∈ C;

• K(I t
j) is the code of the input I t

j ;
• αt is the destination OLC where the transition is executed;
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• K(αt) is the code of the OLC αt;

• bj is the destination component in the OLC αt where the transition is
executed;

• K(bj) is the code of the component bj;

• T is the set of variables that form the excitation function for the counter;

• D is the set of variables that form the excitation function for the register;

• m is the consecutive line in the truth-table of the function decoder
(m=1, . . . , M).

Based on this table, the circuit of function decoder can be implemented
with dedicated memory blocks. Outputs of the circuit FD form excitation
functions T for the counter and D for the register. The volume of the mem-
ory required for the realization of the function decoder can be calculated
as SFD=(R1+R2)∗2RZ , where R1 is the size of the code generated by the
counter, R2 is the size of the code generated by the register, and RZ is the
number of variables used for the OLCs inputs encoding.

5. Implementation of the CMCU USD. The circuit of function decoder is
realized as a memory. Thus it can be implemented with dedicated memory
blocks of the destination FPGA. The remaining blocks of the CMCU USD are
implemented in the same manner as in case of the CMCU USC : the CC, the
CT and the RG are realized with logic blocks while the CM is implemented
using dedicated memory blocks.

5.2.3 Example of synthesis of the CMCU with sharing codes
and function decoder

To bring closer the synthesis method of the CMCU U6 with sharing codes and
function decoder, a controller described by the �ow-char Γ2 (�g. 5.2) will be de-
signed. As it was already shown in the previous section, there are M2=3 OLCs that
have MZ=4 inputs: I1

1=b0, I1
2=b4, I2

2=b7, I1
3=b8. OLCs are encoded using nat-

ural binary code, using R2=dlog2M2e=2 bits: K(α1)=00, K(α2)=01, K(α1)=10.
OLCs components are encoded with R1=3 bits as it was presented in the tab. 5.1.



5.2 The CMCU with sharing codes and function decoder 80

According to the synthesis rules shown in the previous subsection all inputs are en-
coded using RZ=dlog2MZe=2 bits: K(I1

1 )=00, K(I1
2 )=01, K(I2

2 )=10, K(I1
3 )=11.

In the next step, addresses of microinstructions are encoded and formation of
the control memory of the CMCU U6 is done. This stage is performed exactly in
the same manner as it was presented during the synthesis of the CMCU U5 (see
tab. 5.2).

In the third step of the designing process, the table of transitions is formed.
Distinct from the table of transitions of the CMCU U5, now inputs of OLCs are
used as destination of transitions. The transitions table of the CMCU U6 is pre-
sented in the tab. 5.4.

Table 5.4: The transition table of the CMCU U6

αg

K(αg)
Xh αt Ij

t

K(Ij
t ) Z h

q2 q1 z2 z1

α1 0 0 x1 α2 I1
2 0 1 z1 1

α1 0 0 x1 x2 α2 I2
2 1 0 z2 2

α1 0 0 x1 x2 α3 I1
3 1 1 z2 z1 3

The transition table is the base for formation of the excitation function Z for
the function decoder. This function includes two variables Z={z1,z2}:

z2 = q2· q1·x1,

z1 = q2· q1· (x1 + x2).
(5.12)

Function Z keeps the code of the proper input that is selected by the combina-
tional circuit. This code is further decoded by the block FD. Therefore, function
decoder generates the address of microinstruction which is concatenation of the
proper code K(αt) of the OLC and the code of its component K(bj). Table 5.5
presents the table of the function decoder for the CMCU U6.

The circuit of the function decoder is usually implemented using dedicated
memory blocks. However, it can be also realised with logic elements of the FPGA.
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Table 5.5: The table of the function decoder of the CMCU U6

I t
j

K(I t
j) αt

K(αt)
bj

K(bj)
D T h

z2 z1 q2 q1 t3 t2 t1

I1
1 0 0 α1 0 0 b1 0 0 0 � � 1

I1
2 0 1 α2 0 1 b4 0 0 0 d1 � 2

I2
2 1 0 α2 0 1 b7 0 1 1 d1 t2 t1 3

I1
3 1 1 α3 1 0 b8 0 0 0 d2 � 4

In this case functions T and D are formed:

t3 = 0,

t2 = t1 = z2· z1,

d2 = z2· z1,

d1 = z2· z1 + z2· z1.

(5.13)

Now the CMCU U6 may be prototyped using HDLs. Both, the control memory
and the function decoder are implemented with dedicated memory blocks, while
the combinational circuit, the counter and the register are realised with logic blocks
of the FPGA. Figure 5.6 shows the logic schematic of the controller.
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Figure 5.6: Technology structure of the CMCU U6
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5.2.4 Summary
The CMCU with sharing codes and function decoder was introduced in this sec-
tion. The additional block reduces the number of variables of logic functions that
are formed by the combinational circuit. Experiments proved the e�ectiveness of
proposed method. The CMCU USD average consumes 6% fewer LUT elements
than the CMCU USC .

5.3 The CMCU with address converter
The method of sharing codes makes sense only if the size of codes generated by the
register RG and by the counter CT is equal to the width of the microinstruction
address (Barkalov, 2002). Then the following condition is ful�lled:

R1 + R2 = R3. (5.14)

In most cases the total number of bits generated by the register and by the
counter exceeds the width of the microinstruction address. The condition (5.14)
is violated because R1 + R2 > R3 and the volume of the control memory grows
drastically. The minimum volume of the memory can be calculated as:

SCM = (N + 2) ∗ 2R3 , (5.15)

where SCM means the total volume of the control memory, N + 2 counts the
total number of microoperations kept in the control memory (N is the number
of microoperations while two additional bits are formed by y0 and yK), and R3

de�nes the minimum width of the address. It is clear that each additional bit in
the microinstruction address doubles the total volume of the memory.

Sections 5.3 and 5.4 show new synthesis idea of the CMCU with sharing codes.
The method is based on the application of the additional block (address converter)
in the CMCU structure (�g. 5.7). Such an approach has sense only if the condition
(5.14) is violated and the total quantity of codes generated by the register and by
the counter is greater than the width of the address of the control memory.
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Figure 5.7: The structure of the CMCU with address converter

5.3.1 The main idea of the method
Let K(αg) be the state code of the register and K(bt) the state code of the counter.
According to the (5.1), the microinstruction address A(bt) is calculated as the
concatenation of these codes:

A(bt) = K(αg) ∗K(bt).

In the CMCU UCA the address generated by the register and by the counter is
converted by the address converter.

Now the circuit CC forms the system of functions:

T = f(X, Q), (5.16)

D = f(X, Q), (5.17)

and the circuit CA converts generated addresses, forming the new function V :

V = V (Q,X). (5.18)

Here V = {v1, . . . , vR3} is the set of addresses of the control memory.
Presented solution permits to combine the positive features of the traditional

CMCU with base structure (UBS) and with sharing codes (USC) such as:

• minimal number of inputs and outputs of the combinational circuit CC (com-
pared with the USC);
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• minimal width of an address of the control memory (in comparison with the
UBS).

It is clear that application of a given method makes sense only if the imple-
mentation of the CMCU with additional address converter requires fewer memory
blocks of the destination FPGA than CMCUs based on the standard structure
USC .

5.3.2 Synthesis of the CMCU with address converter
The design method of the CMCU with sharing codes and address converter includes
the following steps:

1. Formation of the set of OLCs, encoding OLCs and their compo-
nents . This step is executed in the same manner as it was presented in
previous sections.

2. Natural addressing of microinstructions and formation the of con-
trol memory content . Here microinstructions are simply encoded with
the natural binary codes. Then the content of the control memory is formed.
The volume of the control memory can be calculated as SCM=(N+2)∗2R1+R2 .

3. Formation of the transitions table of the CMCU . According to (5.16)
and (5.17), this table is the base for the formation of excitation functions for
the counter and for the register. Here outputs of the register (function Q)
and of the counter (function T ) are inputs of the address converter.

This table contains the following columns: αg, K(αg), αt, K(α5), Ijt , A(Ijt),
Xh, T , D, h, where:

• αg ∈ C is the initial chain of the �ow-chart Γ;

• K(αg) is the code of the OLC αg ∈ C;

• αt ∈ C is the destination OLC of the transition;

• K(αt) is the code of the destination OLC of the transition;

• Ijt is the j-th input of the OLC αt ∈ C in which the transition from the
output Og of the OLC αg ∈ C is occurred;
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• A(Ijt) is the address of the component in the OLC αt corresponding to
the input Ijt ;

• Xh is the input signal causing the transition < Og, I
j
t > and it is equal

to the conjunction of the elements from the set X;

• T is the set of variables that form the excitation function for the counter
CT (formed with the code A(Ijt));

• D is the set of variables that form the excitation function for the register
RG (formed with the code K(αt));

• h is the number of the transition (h=1, . . . , H).

4. Formation of the table of the address converter . In this step the truth-
table for the address converter is created. Based on functions generated by
the counter and by the register, the microinstruction address is formed.

The table contains the following columns: αg, K(αg), bt, K(bt), At, Vt, m.
Here:

• αg ∈ C is the chain of the �ow-chart Γ;

• K(αg) is the code of the OLC αg ∈ C;

• bt ∈ B is the operational block of the �ow-chart Γ;

• K(αg) is the code of the block bt ∈ B;

• At is the address of the microinstruction encoded in natural binary code;

• Vt is the column containing the variables vr ∈ V that are equal to 1 in
the address At.

• m is the consecutive line in the truth-table of the address converter.

5. Design and implementation of the logic circuit of the CMCU USC .
The circuit CC is implemented using systems (5.16) and (5.17) that are
formed from the table of transitions. Depending on the demands, address
converter may be implemented using either logic elements or memory blocks
of the FPGA. The volume of the memory that is required for the address
converter realization can be calculated as SCA=(R1 + R2)∗2R3 .
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5.3.3 Example of synthesis of the CMCU with address con-
verter

The synthesis method of the CMCU with address converter will be illustrated by
the example. There is the �ow-chart Γ3 shown in the �g. 5.8.

Figure 5.8: The �ow-chart Γ3

Flow-chart Γ3 describes a hypothetical CMCU U7. There are M2=3 OLCs
in the set of operational linear chains: C={α1, . . . , α3}, where α1=〈b0, . . . , b2〉,
α2=〈b3, . . . , b7〉 and α3=〈b8, . . . , b13〉. The OLCs �ow-chart of the CMCU U7 is
illustrated in the �g. 5.9.
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Figure 5.9: The OLCs �ow-chart of the CMCU U7

The longest operational linear chain is α3 that contains M1=6 vertices. There-
fore, there are R1=dlog2M1e=3 bits required to implement the counter. There are
M2=3 OLCs, thus R2=dlog2M2e=2 variables will be used for encoding of inter-
nal states of the controller. The CMCU U7 contains M3=13 operational vertices.
It means that microinstructions can be addressed with the minimum number of
R3=dlog2M3e=4 bits. On the other hand, the total width of an address generated
by the counter and by the register is equal to R1+R2=5. Therefore, the condition
(5.14) is violated (R1+R2>R3) and application of the address converter has sense.

According to the designing rules, OLCs and their components should be en-
coded. Let's use natural binary codes. Table 5.6 illustrates the encoding of OLCs
and their components.

In opposite to the traditional method with sharing codes, the address of each
microinstruction is encoded with R3=4 bits in natural binary code. Therefore,
microinstruction corresponding to vertex b1 has the address A(b1)=0000. Similarly,
the address of microinstruction executed in vertex b9 is encoded as A(b9)=1000 and
so on. Now, the content of the control memory can be formed (tab. 5.7).
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Table 5.6: Encoding of OLCs and their components of the CMCU U7

αg K(αg) bt K(bt) αg K(αg) bt K(bt)

α1 00
b1 000

α3 10

b8 000
b2 001 b9 001
b3 010 b10 010

α2 01

b4 000 b11 011
b5 010 b12 100
b6 011 b13 101
b7 010

Table 5.7: The content of the control memory of the CMCU U7

Vertex Address Microinstruction Comment
y0 y1 y2 y3 y4 y5 yK

b1 0000 0 1 1 0 0 0 0 I1
1

b2 0001 0 0 0 1 1 0 0 �
b3 0010 1 0 0 0 0 1 0 O1

b4 0011 0 0 1 0 0 1 0 I1
2

b5 0100 0 1 0 0 0 0 0 �
b6 0101 0 0 0 1 0 1 0 �
b7 0110 1 1 0 0 1 0 1 I2

2 O2

b8 0111 0 1 0 1 0 0 0 I1
3

b9 1000 0 0 0 0 0 1 0 �
b10 1001 0 0 0 0 1 0 0 �
b11 1010 0 0 1 0 0 0 0 �
b12 1011 0 0 0 1 0 1 0 �
b13 1100 1 1 1 0 0 0 1 I2

3 O3

In the next step, the transition table of the CMCU should be formed. This
table is a base for excitation functions for the counter and for the register. Table
5.8 presents the transition table of the CMCU U7.
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Table 5.8: The transition table of the CMCU U7

αg

K(αg)
Xh αt

K(αt)
bj

K(bj)
D T h

q2 q1 d2 d1 t3 t2 t1

α1 0 0 x1 α2 0 1 b4 0 0 0 d1 � 1
α1 0 0 x1 x2 α2 0 1 b7 0 1 1 d1 t2 t1 2
α1 0 0 x1 x2 x3 α3 1 0 b8 0 0 0 d2 � 3
α1 0 0 x1 x2 x3 x4 α3 1 0 b13 1 0 1 d2 t3 t1 4
α1 0 0 x1 x2 x3 x4 α1 0 0 b1 0 0 0 � � 5

The transition table is a base for formation of the excitation functions D for
the register and T for the counter, according to the (5.19).

d2 = q2· q1·x1·x2· (x3 + x3·x4),

d1 = q2· q1· (x1 + x1·x2),

t3 = q2· q1·x1·x2· x3·x4,

t2 = q2· q1·x1·x2,

t1 = q2· q1·x1· (x2 + x2·x3· x4).

(5.19)

At the next stage, the truth table for the address converter is prepared. An
address of microinstruction is formed based on the OLC code and its component
(tab. 5.9).

Finally the CMCU U7 is designed using hardware description languages. The
control memory and the address converter are realised with dedicated memory
blocks of the FPGA. Figure 5.10 shows the logic schematic of prototyped controller.
There are 13 LUTs required in order to implement the controller.

The main problem of the CMCU U7 is realisation of the address converter,
which is synchronous. Such a module has to form proper address based on codes
delivered from the counter and from the register. Both blocks are triggered by the
rising edge of a clock signal Clk. Additionally, the address ought to be prepared
before falling edge of a Clk, which synchronizes the control memory. Therefore
to ensure proper functionality of the CMCU, additional clock signal Clk2 was
introduced. The address converter should be triggered between rising and falling
edges of the Clk.



5.3 The CMCU with address converter 90

Table 5.9: The table of the address converter

αg K(αg) bt K(bt) At Vt m

α1 00
b1 000 0000 � 1
b2 001 0001 v1 2
b3 010 0010 v2 3

α2 01

b4 000 0011 v2 v1 4
b5 001 0100 v3 5
b6 010 0101 v3 v1 6
b7 011 0110 v3 v2 7

α3 10

b8 000 0111 v3 v2 v1 8
b9 001 1000 v4 9
b10 010 1001 v4 v1 10
b11 011 1010 v4 v2 11
b12 100 1011 v4 v2 v1 12
b13 101 1100 v4 v3 13
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Figure 5.10: Technological structure of CMCU U7

5.3.4 Summary
There was the CMCU with address converter presented in this section. Application
of the additional block has sense only if the total size of codes generated by the
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counter and by the register exceeds the width of the address of the control memory.
Results of experiments showed that proposed method average permits
to reduce the number of required dedicated memory blocks of an FPGA
by 46% in comparison to the traditional CMCU with sharing codes. It
should also be emphased out that the number of other resources of an
FPGA (LUTs, Flip-Flops, Slices) is the same.

5.4 The CMCU with address converter and func-
tion decoder

This section presents the last method of synthesis of the CMCU with sharing codes
that is proposed in the dissertation - the CMCU UCD with address converter and
function decoder. Such a controller combines two ideas presented in previous
sections. Application of the address converter permits to minimize the volume of
control memory if the condition (5.14) is violated, while the additional function
decoder reduces required logic elements for implementation of the CMCU.

5.4.1 The main idea of the method
The CMCU UCD with address converter and function decoder is shown in the
�g.5.11. Excitation functions T for the counter and D for the register are encoded
with the minimum number of bits. Now the combinational circuit CC generates
the excitation function Z for the function decoder:

Z = f(X, Q). (5.20)

Function Z contains encoded addresses Q of all inputs I in the set of OLCs.
They are further decoded by the circuit FD which indicates the proper code for
the counter and for the register:

T = f(Z), (5.21)

D = f(Z). (5.22)
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Figure 5.11: The CMCU with address converter and function decoder

Finally the address indicated by the counter and by the register is converted
via the circuit CA:

V = f(T, D). (5.23)

5.4.2 Synthesis of the CMCU with address converter and
function decoder

The synthesis process of the CMCU UCD is a combination of designing �ows of
CMCUs USD and UCA. Therefore only the most important stages will be presented
(more details were shown in the previous sections).

The designing method of the CMCU with address converter and function de-
coder includes the following steps:

1. Formation of set of OLCs, encoding OLCs inputs and OLCs com-
ponents. First, the set of OLCs is formed. Then, similarly to the synthesis
of the CMCU USC , all OLCs and their components are encoded. Addition-
ally, each input I is encoded with natural binary codes. Finally, each input
has an unique code K(I t

j)

2. Natural addressing of microinstructions and formation of the con-
trol memory content. Here microinstructions are encoded with natural
binary codes. Then the content of the control memory is formed.
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3. Formation of the transition table of the CMCU UCD. According to
the (5.20) this table is the base for formation of the excitation function for
the function decoder.

4. Formation of the table of the function decoder. Based on the code
of each OLC input, the function decoder generates the proper excitation
functions for the counter and for the register.

5. Formation of the table of address converter. In this step the truth-
table for the address converter is created. Based on functions generated by
the counter and by the register an address of the microinstruction is formed.

6. Design and implementation of the logic circuit of the CMCU USC.
Three blocks (CC, CT and RG) of the CMCU are implemented with logic
elements of the FPGA while circuits CM, FD and CA are realized with
dedicated memory blocks.

5.4.3 Example of synthesis of the CMCU with address con-
verter and function decoder

To bring closer the synthesis method of the CMCU U8 with address converter and
function decoder, the controller described by the �ow-char Γ3 (�g. 5.8) will be
designed once more. There are M2=3 OLCs. The encoding of OLCs and their
components is performed in the same manner at it was shown in the previous
section (see tab. 5.6). There are MZ=5 OLCs inputs: I1

1=b0, I1
2=b4, I2

2=b7, I1
3=b8

and I2
3=b13. Therefore, RZ=dlog2MZe=3 bits are required to encode all inputs:

K(I1
1 )=000, K(I1

2 )=001, K(I2
2 )=010, K(I1

3 )=011, K(I2
3 )=100.

At the second stage, microinstructions are addressed with natural binary code.
Then the content of the control memory is formed. This step is executed identically
as it was shown during synthesis method of CMCU U7 with address converter (see
tab. 5.7).

Next, the transitions table of the CMCU U8 is formed. The table is a base for
the excitation function for the module FD. Table 5.10 presents the content of the
table of transitions of the CMCU U8.
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Table 5.10: The transition table of the CMCU U8

αg

K(αg)
Xh αt Ij

t

K(Ij
t ) Z h

q2 q1 z3 z2 z1

α1 0 0 x1 α2 b4 0 0 1 z1 1
α1 0 0 x1 x2 α2 b7 0 1 0 z2 2
α1 0 0 x1 x2 x3 α3 b8 0 1 1 z2 z1 3
α1 0 0 x1 x2 x3 x4 α3 b13 1 0 0 z3 4
α1 0 0 x1 x2 x3 x4 α1 b13 0 0 0 � 5

From the table of transitions, excitation function Z for the function decoder is
formed. The function consist of |Z|=3 variables:

z3 = q2· q1·x1·x2· x3·x4,

z2 = q2· q1·x1· (x2+·x2·x3),

z1 = q2· q1· (x1 + x1·x2·x3).

(5.24)

The truth table of the function decoder is prepared at the next stage. Based
on the function Z, the module FD indicates proper values for the counter and for
the register (tab. 5.11).

Table 5.11: The truth table of the function decoder of the CMCU U8

I t
j

K(I t
j) αt

K(αt)
bj

K(bj)
D T h

z3 z2 z1 d2 d1 t3 t2 t1

I1
1 0 0 0 α1 0 0 b1 0 0 0 � � 1

I1
2 0 0 1 α2 0 1 b4 0 0 0 d1 � 2

I2
2 0 1 0 α2 0 1 b7 0 1 1 d1 t2 t1 3

I1
3 0 1 1 α3 1 0 b8 0 0 0 d2 � 4

I2
3 1 0 0 α3 1 0 b13 1 0 1 d2 t3 t1 4

At the last step, the content of the address converter should be determined.
The truth table for the module CA is exactly the same as it was shown in the
previous section (tab. 5.9). Finally the CMCU U8 can be designed. Now three
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blocks: the function decoder, the address converter and the control memory are
implemented with dedicated memory blocks of an FPGA. Figure 5.12 shows the
technological structure of the CMCU U8.
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Figure 5.12: Technological structure of the CMCU U8

The implementation of the CMCU U8 requires 10 LUTs. Therefore,
the number of such elements was reduced by 23% in comparison to the
CMCU U7 with address converter.

5.4.4 Summary
There was the designing method of the CMCU UCD with address converter and
function decoder presented in this section. The reduction of the number of LUTs
is reached thanks encoding of the excitation functions for the counter and for the
register. Additionally, application of an address converter permits to keep the
minimum volume of the control memory. It should be pointed out, that performed
experiments proved the e�ectiveness of proposed method. The CMCU UCD average
permits to reduce the number of logic blocks of the destination FPGA by 50% in
comparison to the traditional FSM.
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5.5 Conclusions
There were four CMCUs designing methods presented in this Chapter. The �rst
one - the CMCU USC with sharing codes - was initially proposed by prof. A.
Barkalov and oriented to CPLDs. Therefore, it ought to be adapted to the FPGA.
All remaining synthesis methods are based on the CMCU with sharing codes. The
aim of all methods is to reduce the number of logic blocks or - in case of application
of the address converter - reduction of the control memory volume.

In the CMCU USD with sharing codes and function decoder, excitation func-
tions for the counter and for the register are encoded with the minimum number of
bits. These functions are further decoded by the function decoder. An additional
circuit is realized with dedicated memory blocks of an FPGA. Therefore imple-
mentation of the CMCU USD requires less logic blocks than CMCU USC . Detailed
experiments (presented in Chapter 8 proved the e�ectiveness of an application of
the function decoder. Realisation of the controller as a CMCU USD reduces
the number of required logic blocks of an FPGA average by 13%.

Two remaining synthesis methods refer to application of an address converter.
The additional circuit is in charge of keeping the minimum volume of the control
memory. Application of the address converter has sense only if the total length of
codes generated by the counter and by the register exceeds the minimum width of
microinstructions addresses. Conducted investigations showed that in case of con-
trollers, where the control memory ought to be decomposed (their volume exceeds
the volume o�ered by dedicated memory blocks of the FPGA) the CMCU UCA

with address converter reduces the number of dedicated memory blocks of
the FPGA on average by 46% in comparison to the CMCU USC .

Ideas presented in CMCUs USD and UCA were combined in the last synthesis
method of the compositional microprogram control unit with address converter
and function decoder. In the CMCU UCD both address converter and function de-
coder are applied. Results of experiments showed that the CMCU with address
converter and function decoder requires the least resources of an FPGA of all
methods where the operation of sharing codes was applied. It should be pointed
out that the presented method permits to reduce the number of logic
blocks of the destination device on average by 49% in comparison to the
FSM. On the other hand, realisation of the controller as a CMCU UCD requires
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more dedicated memory blocks than traditional automaton by 86%. Therefore,
the proposed synthesis method is the best solution if the total volume o�ered by
dedicated memory blocks of an FPGA does not exceed the volume of the control
memory of the CMCU. In the other cases, one of synthesis methods of the CMCU
with mutual memory presented in the previous Chapter should be used instead.



Chapter 6

Partial recon�guration of CMCUs
implemented in the FPGA

This Chapter deals with partial recon�guration of compositional microprogram
control units implemented in the FPGA. In traditional prototyping methods of
the CMCU, the content of the control memory is realised with logic elements of
the FPGA. However, the most newer FPGAs o�er additionally blocks of dedicated
memory that are integrated with the device. Therefore, the content of the con-
trol memory can be easily implemented with dedicated memories of the FPGA
(Wi±niewski, 2005; Barkalov et al., 2005d). The functionality of the CMCU pre-
pared in such a way can easily be changed. This Chapter introduces the new idea
of the partial implementation of the CMCU. Designers are able to modify only
a few microinstructions of the CMCU. In case of traditional implementation the
whole content of the FPGA ought to be replaced. Partial recon�guration of the
CMCU permits to change only the content of the control memory while the rest
of the system is not modi�ed.

Partial recon�guration of FPGA devices is a relatively new idea. Therefore, not
all programmable devices o�er the recon�guration of the part of their resources.
Such a solution refers especially to devices from Xilix, Altera and Atmel.

The XC2VP30 device (Virtex-II Pro family) from Xilinx was selected as the
base FPGA for the further analysis (Xilinx, 2007). Such a device permits partial
recon�guration and it is available at the University of Zielona Góra. All presented
FPGA structures, researches and performed experiments refer to this FPGA.
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6.1 Introduction to partial recon�guration of FPGA
devices

This section introduces partial recon�guration of FPGA devices. From the func-
tionality of the design, partial recon�guration can be divided into two groups:

• Dynamic partial recon�guration - also known as an active partial re-
con�guration - permits to change the part of the device while the rest of the
FPGA is still running.

• Static partial recon�guration - the device is not active during the recon-
�guration process. While the partial data is sent into the FPGA, the rest
of the device is stopped (in the shutdown mode) and brought up after the
con�guration is completed.

There are two styles of partial recon�guration of FPGA devices from Xilinx:
module-based and di�erence-based.

• Module-based partial recon�guration permits to recon�gure distinct
modular parts of the design. To ensure the communication across the recon-
�gurable module boundaries, special bus macros ought to be prepared. It
works as a �xed routing bridge that connects the recon�gurable module with
the rest part of the design. Module-based partial recon�guration requires to
perform a set of speci�c guidelines during the stage of design speci�cation
that is detailed in (Xilinx, 2004). Finally, for each recon�gurable module
of the design, separate bit-stream is created. Such a bit-stream is used to
perform the partial recon�guration of the FPGA.

• Di�erence-based partial recon�guration can be used when a small change
is made to the design. It is especially useful in case of changing LUT equa-
tions or the dedicated memory blocks content. The partial bit-stream con-
tains only information about di�erences between the current design structure
(that resides in the FPGA) and the new content of the FPGA. There are
two ways of di�erence-based recon�guration known as a front-end and back-
end. The �rst one is based on the modi�cation of the design in the hard-
ware description languages (HDLs). It is clear that such a solution requires
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full repeating of the synthesis and implementation processes. The back-end
di�erence-based partial recon�guration permits to make changes at the im-
plementation stage of the prototyping �ow. Therefore, there is no need for
re-synthesis of the design. The usage of both methods (either front-end or
back-end) leads to creation of a partial bit-stream that can be used for a
partial recon�guration of the FPGA.

All researches and experiments presented in the dissertation are based on the
static di�erence-based partial recon�guration. Such a method was chosen
because of the structure of the CMCU. Di�erence-based partial recon�guration
permits to change the content of the control memory at the implementation stage.
Therefore, most steps of the prototyping �ow can be omitted. Moreover, the
designer can prepare more than one partial bit-streams with alternative versions
of the content of control memory. They can be very easily switched in the FPGA
(the full bit-stream is sent only once).

Next section presents the organization of dedicated memory blocks of Xilinx
FPGAs. Such an organization is very important for understanding of a mechanism
of partial recon�guration.

6.2 The mechanism of partial recon�guration of
Xilinx FPGAs

Figure 6.1 presents the structure of the typical FPGA device from Xilinx. As it
was already shown in Chapter 2, main elements of the device are Con�gurable
Logic Blocks (CLB) which create matrix of connected blocks. Each CLB contains
two logic elements called Slices. Furthermore, each Slice is built from two Look-Up
Tables (LUT) that perform all logic functions. Therefore, all logic elements of the
CMCU such as combinational circuit, register and counter are implemented using
CLBs. Moreover, the FPGA contains dedicated memory blocks called Block-RAMs
(or just BRAMs).

Block-RAMs are organized in columns. The number of columns and BRAMs in
each column is di�erent and it depends on the particular FPGA. For an example,
the device XC2VP30 (Virtex II Pro family) contains 136 dedicated memories which
are grouped in 8 columns organized as 2x20 (two columns containing 20 BRAMs),
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Figure 6.1: The structure of the FPGA device

2x18, 2x16 and 2x14 (Xilinx, 2007). Additionally each BRAM is divided into
lines (also called as INITs). They are used for initialization, con�guration and
partial recon�guration of the block. There are 64 lines per each BRAM (counted
hexadecimal from INIT_00 to INIT_3F ).

Both full and partial bit-stream that is used for con�guration of the device
consist of frames. Each frame contains a portion of information about the imple-
mented design. In case of partial recon�guration, there are only di�erent frames
sent to the FPGA. What is very important, partial recon�guration of Xilinx de-
vices operates on the whole column of BRAMs. It means that modi�cation of one
microoperation in one BRAM causes recon�guration of all dedicated memories
that belong to the same column. In case of the XC2VP30 device, each column of
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BRAMs is divided into 64 frames. One frame corresponds to one line (INIT) in
all BRAMs in the column (for example modi�cation of two frames means recon-
�guration of two lines in all blocks that belongs to the column). Therefore, each
frame contains a portion of information about all BRAMs that are organized in
the column (�g. 6.2).
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63

SAME FRAME
(FRAME 1)

SAME FRAME
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Figure 6.2: Organization of BRAMs

Next section presents the current prototyping �ow of CMCUs. Such a designing
process does not include the idea of partial recon�guration. Therefore, further
section introduces modi�ed prototyping �ow based on the partial recon�guration
of CMCUs implemented in the FPGA.
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6.3 The traditional prototyping �ow of control units
In order to show the idea of the partial recon�guration of CMCUs implemented in
the FPGA, the traditional prototyping �ow of controllers will be presented. Figure
6.3 illustrates the designing process of a typical digital system (Wi±niewski and
W¦grzyn, 2005; Parnell and Mehta, 2003), which can be applied in case of CMCUs
prototyping �ow.

Structural decomposition

Synthesis

Implementation

FPGA

Control unit specification

Figure 6.3: The traditional prototyping �ow

At the beginning, the speci�cation and structure of the CMCU ought to be pre-
pared. The structure of the controller is prepared according to synthesis methods
presented in previous Chapters. Finally, the CMCU may be designed according to
the following steps:

1. Description of the compositional microprogram control unit pre-
pared with HDL languages. At this stage, all modules (combinational
circuit, register, counter and control memory) of the further control system
are created. The speci�cation of the control memory content is not required
now, however the designer can specify initial values for the controller. Next
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description of the compositional microprogram control unit should be veri-
�ed at the software simulator. It allows to avoid most functional errors of
the design.

2. Logical synthesis of the design. The synthesis process converts the design
described with HDLs into the gate level. There are gates, logic blocks and
connections between them created as a result of synthesis (also known as a
"netlist"). This process is the same as it is in the traditional prototyping
�ow.

3. Logical implementation of the design. At this stage, the logic imple-
mentation of the CMCU is performed. As a result of the implementation
process, the bit-stream is produced. It contains full description of the design
that will be sent to the device for con�guration of the FPGA.

4. Hardware implementation of the design. The FPGA is con�gured with
the bit-stream produced in the previous step.

It is clear that any modi�cation of the content of the control memory requires
repeating the full prototyping �ow. Therefore, if there is a need to implement
another version of the CMCU, all steps ought to be performed, even if the designer
wants to change only one bit of the control memory.

Next section presents the new idea of the prototyping �ow of the CMCU. The
method is based on the partial recon�guration of the FPGA devices.

6.4 Partial recon�guration of CMCUs implemented
in the FPGA

The prototyping �ow for the control unit that should be prepared for further
recon�guration is similar to the traditional prototyping process. Therefore at the
beginning, the design should be described using Hardware Description Languages
(HDL) like Verilog or VHDL. Then it should be veri�ed to avoid further functional
errors. After the veri�cation, the design is synthesized. The di�erence between
proposed and traditional prototyping �ows is implementation process. At this
stage, the content of the further control memory is prepared. As the result of
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the implementation process, the bit-stream is created. It contains full information
about con�guration of destination FPGA device. Therefore, the size of the �le is
respectively large. That also means the long FPGA con�guration time (Barkalov
et al., 2005f ; Barkalov and Wi±niewski, 2005a; Barkalov et al., 2005c).

 
Full bit-stream from  

1st prototyping process  

Partial implementation  

FPGA 

Modified memory 
content 

Figure 6.4: The modi�ed prototyping �ow including the operation of partial re-
con�guration of CMCUs implemented in the FPGA

The method of partial recon�guration of the control unit includes the following
steps:

1. Description of the compositional microprogram control unit pre-
pared with HDL languages. This step is performed in the same manner
as it is in the traditional prototyping �ow. Next, the CMCU should be ver-
i�ed at the software simulator. It allows to avoid most functional errors of
the design.

2. Logical synthesis of the design. This process is the same as it is in the
traditional prototyping �ow.

3. Formation of the control memory content. Now the content of the
control memory is created. The designer can prepare as many versions of
the control memory content as it is necessary.

4. Logical implementation of the �rst version of the design. As the
result of the logic implementation process, the bit-stream is produced. It
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contains �rst description of the design that will be sent to the device for
con�guration of the FPGA.

5. Hardware implementation of the design. At this stage the FPGA is
con�gured for the �rst time. Therefore, whole description about the device
must be speci�ed in the bit-stream.

6. Modi�cation of the control memory content. At this step, the content
of the control memory should be replaced with alternative values that were
previously prepared at stage 3. The modi�cation is performed during logic
implementation. The content of the control memory can be speci�ed in many
ways - by an .ucf �le or via Xilinx tools like FPGA Editor, see (Xilinx, 2004)
for more detail.

7. Preparation of the di�erence bit-stream. Now the new bit-stream is
created. It contains only the di�erences between the new version of the
design and previous one, that is already implemented in the FPGA. In fact,
the bit-stream will contain only information about modi�ed elements of the
control memory (Xilinx, 2007).

Steps 6 and 7 should be repeated for each version of the control memory
content that was prepared at stage 3.

8. Partial recon�guration of the device. Using bit-streams that were pro-
duced in step 3, the device can be partially recon�gured. The functionality
of the control unit can be changed very easily and very fast, because only
di�erent frames between the modi�ed and already implemented designs are
sent to the FPGA.

6.5 Example of partial recon�guration of the CMCU
implemented in the FPGA

The idea of partial recon�guration of the compositional microprogram control unit
will be shown by the example of the tra�c lights driver. It is a simpli�ed version
of the control unit just to show the bene�ts of the partial recon�guration of the
CMCU.
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The driver controls the tra�c lights for vehicles and pedestrians on the cross-
road. It is assumed that the CMCU works in the following rules:

• the crossroad is completely collision-free,

• each road has three independent tra�c lines and three independent tra�c
lights, each for vehicles turning left, going straight and turning right,

• to make the design more clear, yellow lights are not considered. There are
only two signals for vehicles and pedestrians. Green light means "go/walk"
and red one says "wait/stop".

The main goal for designers of such tra�c light drivers is to minimize tra�c
bottlenecks and jams. In case of the daytime (morning, before noon, after noon,
etc.) more privileges ought to be admitted for vehicles or pedestrians.

In the example, two versions of tra�c driver are proposed. The �rst one gives
more privileges for vehicles. The simpli�ed model of the design can be described
by four main states.

Figure 6.5: The �rst version of the 3rd state of the tra�c light driver
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In the �rst state green light is set for vehicles turning left. The "Stop" signal is
shown for another vehicle lines. Pedestrians also have to wait. At the second stage,
vehicles that are going straight and turning right may pass trough the crossroad.
The light for cars turning left is changed to red. Pedestrians still wait. The third
step allows turning right while another lights are set to red. It means that none
of drivers turning left, going straight or pedestrians can't go. This stage was
illustrated by the �g. 6.5. Finally, at the last stage pedestrians can walk safely
across the street because all three lights for vehicles are set to red.

It has to be pointed out that such a solution of the tra�c lights is very com-
fortable for vehicles but pedestrians can across the street only in one of the four
states. Therefore, the second version of the driver assumes more privileges for
pedestrians. In this design only the third state was modi�ed (�g. 6.6). Now all
lights for vehicles are set to red. It means, that green light for pedestrians is shown
and they can walk across the street. Such a small modi�cation changes the whole
tra�c cycle, because now pedestrians may safely cross the street twice as frequent
as it was before.

Figure 6.6: The second version of the 3rd state of the tra�c light driver



6.6 Conclusions 109

The design of the tra�c light driver was prepared and implemented using the
XC2VP30 device (Xilinx Virtex-II Pro family). For both versions full bit-streams
and partial recon�guration data were prepared. Table 6.1 shows the results that
were achieved during con�guration. The size of the bit-stream and approximate
time that is needed for device con�guration are presented.

Table 6.1: Results achieved during implementation of the tra�c light driver

Full bit-stream Partial-bit stream
Size [bytes] 1 448 816 2 696
Time [s] 4.5 >0.1

Above table shows that size of the original bit-stream was highly reduced.
During the �rst con�guration of the FPGA over 1448K bytes have to be sent.
In case of partial recon�guration, only 2,5K bytes were required. It means that
original size of the bit-stream was reduced by over 99,81%.

6.6 Conclusions
The idea of partial recon�guration of CMCUs implemented in the FPGA was
shown in this Chapter. Moreover, the new prototyping �ow of CMCUs were pro-
posed. The modi�ed designing method is based on partial recon�guration of a
controller implemented in the FPGA. There is only the control memory content
replaced while the rest of the system is not modi�ed. In the presented prototyping
�ow, logic synthesis and implementation are performed only once. Therefore, such
a realisation highly accelerates whole prototyping process.

Performed experiments showed that the original bit-stream that is sent
to the FPGA can be reduced even over 500 times. Detailed results of
investigations of the e�ectiveness of partial recon�guration of CMCUs implemented
in the programmable devices are presented in Chapter 8.



Chapter 7

The CAD-Tool for Automatic
synthesis of CMCUs (ATOMIC)

This Chapter introduces the dedicated CAD-Tool that was prepared to perform
the AuTOMatic synthesIs of CMCUs (ATOMIC). Based on the description of
the controller as a �ow-chart, ATOMIC produces a code in the hardware descrip-
tion language (Verilog). Such a code is ready for the logic synthesis and further
implementation in the FPGA. There are main features shown in this Chapter. The
detailed description of input and output data formats, switches and parameters
are presented in Appendix A.

7.1 Overview of ATOMIC
ATOMIC implements all 8 methods presented in Chapters 5 and 6. Based on
the description of the controller, ATOMIC generates the code in the Verilog-HDL.
There are three main modules that consist of ATOMIC (�g. 7.1).

The �rst module (fc2olc) analyses the structure of the �ow-chart and produces
the set of operational linear chains. This step is common for all implemented
methods. The second module (olc2mcu) based on the description of OLCs and
the chosen method performs the structural decomposition process. All required
data (excitation functions, description of the control memory, etc.) are stored
using intermediate format (see Appendix A). Such a format may be a base for
various ways of the CMCU description; for example the Verilog or VHDL code
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Figure 7.1: The structure of ATOMIC

may be very easily produced. The last module of ATOMIC - (mcu2verilog) -
generates direct description of the CMCU using the Verilog-HDL language. The
description is ready for logic synthesis and implementation.

ATOMIC was prepared as the module-based tool in order to improve its perfor-
mance. At each stage the description of the prototyped controller may be changed.
Furthermore, once prepared OLC description may be commonly used as the input
for all eight implemented synthesis methods.

The very important feature is the possibility of the external tools usage for fur-
ther analysis. Each excitation function that is produced by the olc2mcu
module may be decomposed with another systems that are based on
functional decomposition like SIS, DEMAIN, etc. Therefore, both struc-
tural and functional decomposition can be used in the prototyping �ow
of the CMCU. The control unit is initially decomposed with structural proce-
dures and then excitation functions produced for internal blocks of the CMCU are
optimized with functional decomposition. Such a solution saves the struc-
ture of the CMCU which leads to possibility of partial recon�guration
of the controller (see Chapter 8). Obviously to perform this task, the excita-
tion function has to be converted into the proper format, however it is a relatively
easy process. It also has to be pointed out that the idea of joined structural and
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functional decomposition in the prototyping �ow of CMCUs will be investigated
in the future in more details and it is not within the scope of the dissertation.

7.2 Realisation of ATOMIC
ATOMIC was implemented using the standard C++ language (Kernighan and
Ritchie, 1977; Stroustrup, 1986). It does not include any additional libraries or
external units, thus it can be easily compiled under any system and any platform
that supports the C++ language (Windows, Solaris, Unix, etc.).

From the mathematical point of view, ATOMIC is based on the graph theory
and implements methods of searching graphs (Berge, 1985; Wilson, 1979; Harary,
1994; Aho et al., 1974). Both modules fc2olc and olc2mcu read the input data and
dynamically form the adequate oriented graph that contains all information about
the �ow-chart (or the OLC �ow-chart). Such a graph can easily be searched using
standard graph searching methods. ATOMIC operates on the modi�ed algorithm
of the DFS (Cormen et al., 2001). Such a method was used during realisation of
the module fc2olc and olc2mcu as well. The original algorithm was modi�ed and
�t to perform adequate operations. In case of the unit fc2olc, operational vertices
are replaced by the adequate OLC during the searching process. Here traditional
stack is used. In case of the olc2mcu module, adequate excitation functions are
formed during the searching operation. It has to be pointed out, that functions for
all the modules (counter, register, function decoder) are formed during the same
step, thus the whole process is executed once only. The complexity of implemented
algorithms is linear; Θ(|V | + |E|), where |V | means the total number of vertices
(this number corresponds to the total number |B| of all operational vertices in the
initial �ow-chart) and |E| is the total number of edges between vertices.

The presented tool was prepared to aid the prototyping process of CMCUs
and it was applied to perform all experiments. Next Chapter shows the detailed
results of implementation of the control unit that was prepared with all 8 methods
shown in the dissertation. The analysis of results of experiments is presented as
well. Moreover, the detailed description of ATOMIC like intermediate formats and
command-line parameters can be found in Appendix A.



Chapter 8

Results of experiments

This Chapter presents results of experiments that were made to check the e�ec-
tiveness of proposed synthesis methods. Moreover, bene�ts of partial recon�gu-
ration will be shown as well. The �rst section deals with results gained during
implementation of prepared CMCUs in an FPGA. Achieved values are analysed in
detail and �nally concluded with an attempt to select the proper synthesis method
depending on the initial �ow-chart description. Experiments of the partial recon-
�guration of CMCUs are shown in the second section. Finally, the last section
concludes achieved results.

8.1 Results of experiments of investigations with
prepared synthesis methods

This section presents results of experiments that were achieved during implemen-
tation of CMCUs designed according to the rules shown in Chapters 4 and 5. At
the beginning, there is short introduction to the library of test modules (bench-
marks) that were used for the veri�cation of prepared synthesis methods. Further,
the simulation of the functionality of the CMCU will be presented. The third
subsection shows the main results of experiments made to check the e�ectiveness
of proposed synthesis methods. Finally, all the achieved values are analysed and
concluded.
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8.1.1 The library of test modules
All synthesis methods presented in Chapters 4 and 5 were veri�ed with over 100 test
modules (benchmarks). Each test module was prepared in the text-format that
contains description of the CMCU as the �ow-chart (see Appendix A for more
detail). The library of test modules was initially created at Doneck University
(Ukraine). Now it is expanded in University of Zielona Góra. Most of prepared
benchmarks describe hypothetical �ow-chart however some of them contain the
description of real-devices (for example the tra�c light controller, systems with
arithmetic operations, etc.).

8.1.2 Veri�cation of prepared methods
Veri�cation of the functionality of prepared CMCUs was performed with the soft-
ware Simulator (here Active-HDL from Aldec and ModelSim from Mentor Graph-
ics were used). The simulation was performed for each synthesis method. The
veri�cation of each module was similar. First, a Verilog code was generated for
each synthesis method using ATOMIC (see Chapter 7). Next, the controller was
simulated and its functionality was veri�ed.

The veri�cation process will be illustrated by an example. There is an ex-
emplary �ow-chart Γ4 of the CMCU U9 shown in the �g. 8.1. The �ow-chart
Γ4 contains |B|=10 operational and |X|=2 conditional vertices. There are |Y |=5
microoperations that are generated by the controller. Let's design the U9 as the
CMCU with sharing codes. The set of operational linear chains contains |C|=3
OLCs: α1=〈b1, b2, b3〉, α2=〈b4, . . . , b7〉 and α3=〈b8, b9, b10〉 . Therefore, there are
R2=2 variables Q={q2,q1} required to keep the state of the controller. The longest
OLC is α2 and it contains M1=4 operational blocks. It means that two variables
T={t1,t2} will form the excitation function for the counter. Both codes gener-
ated by the counter A={a1,a2} and by the register Q={q1,q2} are encoded using
two variables, thus the address of each microinstruction has the width equal to
R3=R1+R2=4. According to the (5.1), such address is formed as the concatena-
tion of codes generated by the counter and by the register: A(bt)=K(αg)*K(bt).

Figure 8.2 shows results of the software veri�cation of the U9 designed as the
CMCU with sharing codes. Here, the microoperation y0 increments the counter
and it is a feed-back signal for the counter and for the register. The additional
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Figure 8.1: The �ow-chart Γ4

variable yK is set to 1 if the �nal vertex of the �ow-chart is reached.
The counter and the register are active on the positive edge of the clock signal.

Dedicated memory blocks that were used for implementation of the control memory
are synchronous and the clock signal ought to be connected as well. Because the
variable y0 drives the counter and the register, thus microinstructions are generated
when the negative edge of the clock signal appears. Such a solution ensures the
proper functionality of the CMCU.
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Figure 8.2: Results of the simulation of the CMCU U9

8.1.3 Results of experiments
This section presents results that were achieved during the logic synthesis and
implementation of CMCUs. All synthesis methods were veri�ed with over 70
benchmarks. Additionally, there was an FSM model prepared for each test. The
automaton was created according to the rules presented in (IEEE, 2001; Thomas
and Moorby, 2002). It should be pointed out that all FSMs were prepared in
such a way, that during implementation, all microoperations were realised with
dedicated memory blocks of the FPGA.

The prototyping process for each benchmark was similar. Based on the �ow-
chart description (.fc �le), the controller was structurally decomposed with all
8 synthesis methods presented in the dissertation. Additionally, there was an
equivalent FSM produced. Achieved Verilog codes were �nally synthesised and
implemented with the Xilinx XST tool.

Table 8.1 presents average results of the CMCU implementation designed with
the particular synthesis method in comparison to the FSM and to the traditional
CMCU with mutual memory. To clarify the presentation of results, detailed values
that were achieved during experiments are presented in Appendix B. As the
destination, the FPGA XC2VP30 (Xilinx Virtex-II Pro family) was selected. The
device contains 27392 Flip-Flops, 27392 LUTs (13696 Slices) and 136 dedicated
memory blocks (Block-RAMs). The device was selected because of its structure
(it can be partially recon�gured) and its availability at University of Zielona Góra.
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8.2 Analysis of results of experiments
The detailed analysis of results presented in tables 8.1 and B.1 (Appendix B)
shows that the number of logic blocks that are required for implementa-
tion of the controller in the FPGA is strongly tied with the number of
microinstructions that are held in the control memory.

From the tab. B.1 that is presented in Appendix B we can see that in case of
relatively small devices where the control memory may be implemented
with one dedicated memory block, the realisation of the controller as
the CMCU USD with sharing codes and function decoder gives the best
results. Firstly, it requires average the fewest number of logic blocks among
all presented methods. Furthermore, the control memory is implemented with
one dedicated memory block, thus there is no need for application of the address
converter. Obviously application of the function decoder is optional - its usage
reduces the number of logic blocks but increases the number of dedicated memories.

According to the (5.14), if the total number of bits generated by the register
and counter exceeds the width of the microinstruction address, the CMCU UCD

with address converter and function decoder ought to be selected (see Chapter 5).
It should be pointed out that results gained during realisation of the controller
as the CMCU USD are similar to the values achieved for the CMCU UCD. The
number of required logic blocks for implementation of both controllers are almost
the same. However, in case of control units that contain memories that ought
to be decomposed (their volume exceeds the volume of one dedicated memory
block), the CMCU with address converter requires on average by 46%
fewer dedicated memory blocks than the CMCU with sharing codes
(see benchmarks Test031, Test036, TestAW02 and further presented in tab. B.1
in Appendix B). These results prove the e�ectiveness of application of
the address converter in case of CMCUs, where the address indicated
by the counter and by the register is wider than the minimum number
of bits needed for microinstructions addressing.

The CMCU USD with address converter and function decoder consumes the
fewest number of logic blocks of the destination FPGA in case of controllers where
the control memory is decomposed (which means that more than one BRAM is
used). Such a realisation requires only 49% LUTs in comparison to the FSM and
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57% in comparison to the CMCU with mutual memory. It means that the proposed
synthesis method with address converter and function decoder reduces
the number of logic blocks that are used for implementation of the
controller over two times in comparison to the traditional automaton.
On the other hand, there are more dedicated memory blocks required for realisation
of the control unit. The number of dedicated memory blocks increases on average
by 86%, therefore the CMCU UCD is the best solution for implementation of the
controller in FPGAs that contain enough dedicated memory blocks.

Finally from the tab. B.1 we can see, that among controllers that produce
more than 150 microinstructions, the CMCU UOD with outputs iden-
ti�cation and function decoder gives the best results. In this case, such
a realisation on average requires the fewest dedicated memory blocks and usually
the fewest logic blocks as well.

Concluding, it should be pointed out that performed experiments proved the
e�ectiveness of proposed synthesis methods. The criteria of all experiments was to
reduce the number of logic blocks that are required for the controller implementa-
tion. The detailed analysis of the results of experiments showed that selection of
the proper synthesis method may be tied with the structure of the CMCU. There
are three typical situations when the proper synthesis algorithm can be proposed:

• In case of relatively small systems (where the number of microinstructions
does not exceed 150 and the control memory can be implemented with one
dedicated memory block), the CMCU with sharing codes and function
decoder seems to be the best solution. However, it should be pointed out
that such a realisation consumes at least two dedicated memory blocks of
the FPGA. Therefore, if a number of available dedicated memory blocks is
limited, the method with outputs identi�cation should be used.

• In case of controllers where the volume of the control memory exceeds the
volume of one dedicated memory block and the total number of microin-
structions is fewer than 150, the CMCU with address converter and
function decoder gives the best results.

• In case of controllers where the total number of microinstructions exceeds
150, the CMCU with outputs identi�cation and function decoder
ought to be selected.
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8.3 Results of experiments of partial recon�gura-
tion of CMCUs implemented in the FPGA

This section presents analysis of results of partial recon�guration of CMCUs im-
plemented in the FPGA. Detailed values gained during experiments are shown in
Appendix B.

The partial recon�guration process of CMCUs was performed on the XC2VP30
device. As it was already mentioned in Chapter 6, such FPGA contains 136
dedicated memory blocks organized in 8 columns. Each column can be con�gured
with 64 frames independently (one frame con�gures one line (INIT) in all BRAMs
that belong to the column).

Analysis of results of experiments showed that the way of realisation of the
control memory of the CMCU in the FPGA is very important. Figure 8.3 presents
three variants of implementation of a hypothetical CMCU where two microinstruc-
tions A and B are partially recon�gured. In the �rst mode, both microinstructions
are implemented in the separate BRAMs that are placed in the same column. Both
A and B are located in the line INIT_00 of its BRAM. Therefore, during partial
recon�guration only one frame will be sent to the FPGA. Such a frame covers lines
of both BRAMs, because they are situated in one column. In the second mode,
both A and B are implemented in the same BRAM. However there are two lines
required (A is initialized with INIT_00 while B with INIT_01. It means that two
frames are required for recon�guration. In the third mode, A and B are imple-
mented in two BRAMs. Now it is not important that both microinstructions are
con�gured with the same line (INIT_00 ), because they are located in the di�erent
columns. Therefore, two frames are sent during recon�guration.

Table 8.2 shows that the best results were achieved during implementation of
the �rst variant of the controller. Despite the fact that two lines are modi�ed,
only one frame is sent to recon�gure the device and the original bit-stream was
reduced over 500 times. Very interesting results were achieved during implemen-
tations of two remaining variants. Both versions required two frames for partial
recon�guration, however the size of partial bit-streams are di�erent. In case of the
second variant, where both microinstructions were located in the same BRAM, the
bit-stream was reduced over 400 times. The worse gain was achieved during third
mode, where A and B were realised with BRAMs located in the di�erent columns.
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The detailed analysis of performed experiments indicates that the reduction of
the size of the original bit-stream strongly depends on the placement of the control
memory in dedicated memory blocks of an FPGA. The best gain is reached in
case of implementation of the control memory with BRAMs that are located in
the same column. Partial recon�guration of such a organization requires the least
amount of con�guration frames. Experiments showed that even replacement of the
content of the control memory that was implemented with 13 BRAMs (organized
in one column) permits to reduce the original bit-stream over 50 times.
Furthermore, the worst results were achieved in case of implementation of the
control memory with BRAMs located in separate columns. Partial recon�guration
of the control memory that was realised with 13 BRAMs placed in 8 di�erent
columns reduces the size of the bit-stream over 8 times.

Concluding, it should be pointed out that partial recon�guration of com-
positional microprogram control units implemented on the FPGA re-
duces the size of the original bit-stream even over 500 times. In case
of controllers, where the control memory ought to be decomposed into more than
one BRAM, the best gain is reached during realisation of the memory with blocks
located in the same column. The placement of each BRAM can be easily modi�ed
with tools delivered from Xilinx, which additionally checks routings and timing
paths. Detailed values that were gained during partial recon�guration of CMCUs
implemented on the FPGA are presented in Appendix B.



Chapter 9

Conclusions

The development of microelectronics bene�ted in appearance of the system-on-a-
programmable-chip that can be used for implementation of complex digital sys-
tems. The main part of SoPCs is an FPGA. Such a device contains logic blocks
for implementation of the combinational logic and dedicated memory blocks that
o�er additional area for data storage. Therefore, traditional methods of the de-
sign prototyping evaluate. The aim of such modi�cations is the reduction of the
number of logic blocks of the FPGA. This task is very often solved by application
of the design decomposition.

One of main blocks of the digital system is a control unit. It can be designed as
the compositional microprogram control unit, where the controller is decomposed
into two main parts. The �rst one is in charge of the proper address formation
of microinstructions that are kept in the control memory. The main advantages
of such realisation is a possibility of implementation of the controller using logic
elements and dedicated memory blocks o�ered by FPGAs. Moreover, thanks to
its structure, part of the CMCU that is already implemented in the FPGA can be
easily recon�gured.

The structural synthesis of compositional microprogram control units was the
main scope of the dissertation. Six new designing methods of the CMCU were
proposed. The aim of all methods is to reduce the number of logic blocks that are
required for implementation of the controller in the FPGA. Prepared algorithms
were divided into two groups. The �rst one deals with the CMCU with mutual
memory, where the microinstructions address is used for recognition of internal
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states of the controller. The second group is oriented on the formation of the
microinstruction's address by codes generated by the register and by the counter.
Additionally, the CMCU with address converter permits to decrease the volume
of the control memory to the required minimum.

The e�ectiveness of presented methods was proved thanks to the prepared de-
sign aided system. ATOMIC performs the automatic structural decomposition of
CMCUs. The output code (generated in the Verilog-HDL language) is ready for
further logic synthesis and implementation. Modular structure of the designed sys-
tem permits to modify the structure of the CMCU at any level of the prototyping
process.

The second task of the dissertation was partial recon�guration of CMCUs im-
plemented in the FPGA. The designer can replace only the control memory content
of the controller, that already resides in the programmable device. Therefore, there
is no need to repeat the whole CMCU prototyping process for each version of the
control unit. Full designing process is done only once. For further versions of
the CMCU, only the reduced prototyping �ow ought to be performed. There-
fore, partial recon�guration reduces the size of data that are sent to the FPGA.
Additionally, the con�guration time is shorter, what in consequence bene�ts in
reduction of the risk of errors that may occur during the FPGA con�guration.

The most important innovations introduced in the dissertation are:

• preparation of new synthesis methods of CMCUs oriented on the
reduction of the number of logic blocks that are required for im-
plementing the controller in the FPGA,

• preparation of new synthesis methods of CMCUs oriented on the
reduction of the number of dedicated memory blocks that are re-
quired for implementing the controller in an FPGA,

• designing of the dedicated tool that aids the prototyping process
of CMCUs implemented in the FPGA,

• preparation of the new CMCU prototyping �ow, based on the par-
tial recon�guration of controllers implemented in the FPGA,

• veri�cation of the e�ectiveness of prepared methods by adequate
experiments (implementation of benchmarks in the FPGA).
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Performed experiments proved the e�ectiveness of proposed synthesis meth-
ods. Criteria of all researches were to reduce the number of logic blocks that are
required for the controller implementation. The detailed analysis of the results
of experiments showed that the proper synthesis method may be chosen at the
speci�cation stage.

There are three main future directions of the presented work. The �rst one
is an attempt of conjunction of both CMCUs decomposition methods. Excita-
tion functions of internal blocks of CMCUs that are formed during the structural
decomposition are further decomposed by commercial synthesis tools. Therefore,
there is an idea to apply the external functional decomposition. This task is suc-
cessfully developed by academic organizations for both, CPLDs (Kania, 2004; Ka-
nia, 1999; Devadas et al., 1988) and FPGAs (Selvaraj et al., 2005; Jó¹wiak and
Chojnacki, 2003; Rawski et al., 2003). Additionally, the functional decomposition
can be applied in reduction of the volume of the controller memory. This idea is
already been developed and was outlined in (Wi±niewska and Wi±niewski, 2005).

The second aim of future work is improvement of the encoding of internal states
in case of CMCUs based on sharing codes. Such controllers contain simpli�ed au-
tomaton for microinstructions addressing which can be optimized with algorithms
like NOVA or JEDI (Sentovich et al., 1992b).

Proposed synthesis methods of the CMCU can be expanded to improve the
safety of the controller (Halang and Krämer, 1994; Adamski, 1999; Halang and
Krämer, 1992; Halang and Adamski, 1997; Adamski et al., 2007). There are
ideas to implement the combinational circuit with dedicated memory blocks of
the FPGA. Additionally, such a realisation allows partial recon�guration of the
combinational circuit. Therefore, it means that the functionality of the controller
can be easily modi�ed. Presented idea has been already developed as a common
project with prof. W.A.Halang (FernUniversität of Hagen).

The presented work bene�ted publications in journals (10 international and 3
domestic). Moreover, conducted investigations were presented at various work-
shops and conferences (16 international and 5 domestic). Totally, there were 34
articles published that directly refer to the dissertation. Presented solutions were
honoured by four awards (two submitted at OWD and KNWS conferences, and
two Rector's group awards). The work was realised as a part of the Integrated
Regional Operational Programme and as a part of KBN grant no 3 T11C 046 26.



Appendix A

Description of ATOMIC

Consecutive sections present the detailed description of ATOMIC. Firstly, the
structure of ATOMIC is presented. In the second section, formats of input and
output data are shown. Finally, the last section describes ATOMIC command-
parameters and switches. The overview of the tool is shown in Chapter 7.

A.1 The structure of ATOMIC
Figure A.1 presents the idea of prototyping �ow of CMCUs. Such a �ow is per-
formed by ATOMIC's modules.

Figure A.1: The detailed structure of ATOMIC
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Based on the �ow description the module fc2olc generates the .olc �le. Such
a �le contains the description of operational linear chains. The operation is per-
formed in 5 main steps:

1. Reading and analysis of input data.

2. Searching for OLCs.

3. Searching for OLCs inputs.

4. Generating output data.

5. Writing the output �le.

Next the main structural decomposition is performed by the olc2mcu unit.
Here one of the eight of the CMCU prototyping methods is used (command-line
switches are described in section A.3). The structural synthesis is made in 5 main
steps:

1. Reading and analysis of input data.

2. Encoding OLCs and their components (with the selected method).

3. Expanding the memory content (conversion to the binary format).

4. Creating excitation functions.

5. Writing the output �le.

The structural synthesis performed by ATOMIC was improved, thus the tran-
sition table of the CMCU is not formed. Due to the structure of ATOMIC, exci-
tation functions are generated directly from the graph that represents the OLCs
�ow-chart. Therefore, the synthesis process is faster and additionally less compu-
tational memory is used (there is no need to represent the transition table in the
memory).

Finally, the description of the CMCU is converted to the Verilog language with
the mcu2verilog module. This process is performed in only two stages. The input
�le is read, and then it is converted to the Verilog-HDL format. Finally, the CMCU
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is written as the Verilog source code and it is ready for further logic synthesis and
implementation.

It should be pointed out that each operation of execution of each presented
modules is logged into a log-�le. Such a log-�le is additionally written to the
screen (however, it can be turned o�, see section A.3).

The next section presents the detailed input and output data format of each
ATOMIC module.

A.2 Input and output data formats of ATOMIC
This section describes all data formats that are used by ATOMIC modules. At
the beginning the input format of ATOMIC is shown. It is also the input for
the module fc2olc. The second subsection presents all intermediate formats that
are exchanged by ATOMIC modules. Finally, the last subsection deals with the
output data of ATOMIC that is generated by the mcu2verilog module.

A.2.1 The input data format of ATOMIC
The input for ATOMIC is speci�ed as a text-�le that contains the description of
the �ow-chart (.fc) �le. Such a description was initially proposed in (Baranov,
1994). The input �le is divided into two sections: the �ow-chart description and
microinstructions de�nition.

The �rst part contains the description of the �ow-chart structure. Figure A.2
shows the graphic and text version of the CMCU U9. Each line corresponds to one
block of the �ow-chart. The line must begin with the number of the vertex. Next
the symbol of the vertex appears, where:

• S - start - initial vertex of the �ow-chart. After this symbol there is a number
of next vertex of the �ow-chart.

• O - operational vertex. After the symbol, a name of pseudo-microinstruction
is declared (i.e. Y1). Such a pseudo-microinstruction is de�ned in the second
part of the �le. Then, there is a number of the next block where the transition
should be performed.
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• X - conditional vertex of the �ow-chart. After the symbol there is a de�nition
of the block name (x1, x2, etc.). Next numbers of destination vertices appear
- �rst number means the vertex where the transition should be executed in
case if the condition is true while the second one shows the destination in
case of being false.

• E - end - �nal vertex of the �ow-chart.

Figure A.2: The graphic and text description of the exemplary CMCU U9

The second part of the �le contains the de�nition of pseudo-microinstructions
that were already declared by operational vertices of the �ow-chart. There is a
name of pseudo-microinstruction that is followed by the list of microoperations
that are executed in such a pseudo-microinstruction.
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The description of microinstructions is compacted, thus two or more di�erent
vertices may de�ne the same pseudo-microinstruction. Of course such compacted
information is expanded in further steps executed by ATOMIC and �nally each
vertex of the �ow-chart will execute one microinstruction. For example, in the
CMCU U9 there are two pseudo-microctions named Y1 and Y2. Here Y1 consists of
microoperations y1 and y3 that are executed in vertices b1 and b5 while Y2 includes
y2 that is executed in the vertex b4.

A.2.2 The intermediate data formats of ATOMIC
ATOMIC consists of three modules thus each module has its own data format.
The description of the �ow-chart presented in the previous subsection is either
input for ATOMIC and for the module fc2olc. Such a module generates interme-
diate data format (.olc �le) that contains the description of the set of operational
linear chains. Of course, additionally information about the content of the control
memory is speci�ed. The structure of the .olc �le is similar to the .fc structure.
The set of operational linear chains is also described as a �ow-char, however the
meaning of the symbols are now the following:

• S - start - initial vertex of the OLC �ow-chart. After this symbol there is a
number of next vertex of the OLC �ow-chart.

• O - main input and description of the OLC. After the symbol there are four
numbers speci�ed separated by commas, consecutive: the number g of the
OLC αg ∈ C, the number t of the input I t

g in the OLC αg ∈ C, the position
of vertex bi in the OLC αg ∈ C, the number of next vertex bj in the OLC
�ow-chart. Next, besides colons, there is a number of microinstructions that
are executed inside the chain (sum of all operational vertices inside the OLC
αg ∈ C). Finally there are pseudo-microinstructions speci�ed, separated by
commas. The meaning of pseudo-microinstructions is the same as it was
explained during the .olc �le description.

• I - input of the OLC (appears only if the OLC has more than one input).
After the symbol there are four numbers speci�ed, consecutive: number of
the OLC, number of the input in the OLC, position in the OLC, number of
the next vertex in the OLC �ow-chart.
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• X - conditional vertex of the OLC �ow-chart. After the symbol there is a
de�nition of the name of the block (x1, x2, etc.). Next, numbers of destina-
tion vertices appear - �rst number means vertex, where the transition should
be executed in case if the condition is true while the second one shows the
destination in case of being false.

• E - end - �nal vertex of the OLC �ow-chart.

The exemplary .olc �le for the CMCU U9 is presented in the A.3.

Figure A.3: The OLCs description of the CMCU U9

The .olc �le contains all necessary data for the main synthesis of the CMCU.
The �le is read by the module olc2mcu which produces the description of the
CMCU (.mcu �le) by one (of eight) selected synthesis method. There are three
main sections speci�ed in the .mcu �le: Module name and parameters, Excitation
functions, Control memory content. The �rst section contains information about
the CMCU (its name, number of inputs, outputs, etc). The second section de�nes
excitation functions for the counter, register and/or function decoder. The last
section contains the description of the control memory (speci�ed as a table of
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microoperations). In case of applying the circuit of function decoder or address
converter, additional description of such a block is written as well. The exemplary
.mcu �le content for the CMCU U9 realised as a controller with mutual memory
is presented in the listing A.1.

Listing A.1: The MCU description of the CMCU U9

//Module name and parameters :
Module=CMCU_U9_mm
Method=1
Inputs=2
Outputs=6
Microinstructions=6
InputNames=x1 , x2
OutputNames=y0 , y1 , y2 , y3 , y4 ,yK

// Exc i t a t i on f unc t i on s :
Counter=3
t1=0
t2=a1 ∗ ! a2 ∗ ! a3∗x1
t3=a1 ∗ ! a2 ∗ ! a3 ∗ ! x1∗x2

//Contro l Memory content :
Address=3
O0=010100
O1=101000
O2=010100
O3=000110
O4=001000
O5=100111
DefaultMemoryValue=000000

Finally, the code in Verilog-HDL is generated. Such a code is the output �le
produced by ATOMIC and it is ready for the further logic synthesis and imple-
mentation. The detailed description of the Verilog code generated by ATOMIC is
shown in the next subsection.
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A.2.3 The output data format of ATOMIC
ATOMIC produces the code in the Verilog-HDL as the output. Depending on the
selected method, the output �le is di�erent. Listing A.2 presents the exemplary
Verilog code of the CMCU U9 generated for the method with mutual memory.

Listing A.2: The Verilog code for the �ow-chart Γ9

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Descr ip t i on o f CMCU
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module CMCU_U9_mm (y1 , y2 , y3 , y4 ,yK, c lk , r e s e t , x1 , x2 ) ;
output y1 , y2 , y3 , y4 ,yK;
input c l k ;
input r e s e t ;
input x1 , x2 ;

wire [ 3 : 1 ] t ; // e x c i t a t i o n func t i on f o r counter
wire [ 3 : 1 ] a ; // address genera ted by counter
wire y0 ;

CC combinat iona l ( t , x1 , x2 , a ) ;
CT counter ( a , c lk , t , r e s e t , y0 ) ;
CM memory ({y0 , y1 , y2 , y3 , y4 ,yK} ,~ clk ,~yK, r e s e t , a ) ;

endmodule

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Descr ip t i on o f COMBINATIONAL CIRCUIT
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module CC ( t , x1 , x2 , a ) ;
output [ 3 : 1 ] t ;
input [ 3 : 1 ] a ;
input x1 , x2 ;

assign t [ 1 ]=0 ;
assign t [2 ]= a [1]&~a [2]&~a [3 ]& x1 ;
assign t [3 ]= a [1]&~a [2]&~a [3]&~x1&x2 ;

endmodule
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//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Descr ip t i on o f COUNTER
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module CT (q , c lk , data , r e s e t , load ) ;
output reg [ 3 : 1 ] q ;
input r e s e t , load , c l k ;
input [ 3 : 1 ] data ;

always @(posedge r e s e t or posedge c l k )
begin

i f ( r e s e t == 1 ' b1 ) q = {3{1 ' b0 }} ;
else i f ( load == 1 ' b1 ) q = data ;
else q=q+1;

end
endmodule

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
// Descr ip t i on o f CONTROL MEMORY
//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
module CM (y , c lk , oe , r e s e t , address ) ;
output reg [ 6 : 1 ] y ;
input [ 3 : 1 ] address ;
input c lk , oe , r e s e t ;

// s yn t h e s i s a t t r i b u t e bram_map o f CM i s yes
always @(posedge c l k )
begin

i f ( r e s e t ) y=0;
else i f ( oe )
case ( address )

0 : y=6'b010100 ;
1 : y=6'b101000 ;
2 : y=6'b010100 ;
3 : y=6'b000110 ;
4 : y=6'b001000 ;
5 : y=6'b100111 ;
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6 : y=0;
7 : y=0;
default : y=6'b000000 ;

endcase
end
endmodule

A.3 Arguments of ATOMIC modules
This section shows the usage of ATOMIC. All modules are independent of the
platform and system. Therefore, ATOMIC tools operate under the command-line
interface. Each module ought to be run with at least one argument where the
name of the input �le is speci�ed. Furthermore other arguments separated by
the space character may be speci�ed. Consecutive subsections presents available
arguments for each ATOMIC module.

A.3.1 The usage of the fc2olc module
The module is executed by the following command:

fc2olc input�le.fc − o outputfile − q

The meaning of arguments:

• input�le.fc is the input �le name that contains the �ow-chart description;

• -o output�le (optional) is the name of the output �le, where results are
written (the default output name is the same as inputname with the .olc
extension);

• -q (optional) runs in the quiet mode (the log is not displayed on the screen).

Example of the execution: fc2olc test.fc -q
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A.3.2 The usage of the olc2mcu module
The module is executed by the following command:

olc2mcu input�le.olc −m[1− 8]− o outputfile − q

The meaning of arguments:

• input�le.olc is the name of the input �le that contains the OLCs description;

• -m[No], where No is a number of the synthesis method (1 . . . 8):

1. The CMCU with mutual memory.

2. The CMCU with function decoder.

3. The CMCU with outputs identi�cation.

4. The CMCU with outputs identi�cation and function decoder.

5. The CMCU with sharing codes.

6. The CMCU with sharing codes and function decoder.

7. The CMCU with address converter.

8. The CMCU with address converter and function decoder.

• -o output�le (optional) is the name of the output �le, where results are
written (the default output name is the same as inputname with the .mcu
extension;

• -q (optional) runs in the quiet mode (the log is not displayed on the screen).

Example of the execution: olc2mcu test.olc -m7 -o cmcu_conv.mcu
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A.3.3 The usage of the mcu2verilog module
The module is executed by the following command:

mcu2verilog input�le.mcu − o outputfile − q

The meaning of arguments:

• input�le.olc is the name of the input �le that contains the description of the
CMCU in the .mcu format;

• -o output�le (optional) is the name of the output �le, where results are
written (the default output name is the same as inputname with the .v
extension;

• -q (optional) runs in the quiet mode (the log is not displayed on the screen).

Example of the execution: mcu2verilog cmcu_conv.mcu -o cmcu.v



Appendix B

Detailed results of experiments

Detailed results of experiments are presented in this Appendix. First section anal-
yses the e�ectiveness of prepared synthesis methods, while the second one shows
results of experiments performed with partial recon�guration of CMCUs.

B.1 Detailed results of experiments of e�ectiveness
of prepared synthesis methods

Table B.1 shows results of implementation. To clarify the presentation of achieved
results there were only most important benchmarks selected. It should be pointed
out that the detailed analysis and calculation of average results of the whole col-
lection of benchmarks are described in Chapter 8.

The table contains the following columns:

• Benchmark - the name of the benchmark;

• X - the number of inputs (logic conditions) of the controller;

• Y - the number of outputs (microoperations) of the controller;

• M1 - the length of the longest OLC (such OLC that contains most operational
vertices);

• M2 - the total number of OLCs;

• M3 - the number of microinstructions (total number of operational vertices);
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• FPGA resources - the name of the presented FPGA resource (Slice, Flip-
Flop, Look-Up Table or dedicated Block-RAM);

• FSM - results achieved for implementation of the controller as the FSM;

• MM - results achieved for implementation of the controller as the CMCU
with mutual memory;

• FD - results achieved for implementation of the controller as the CMCU with
function decoder;

• OI - results achieved for implementation of the controller as the CMCU with
outputs identi�cation;

• OD - results achieved for implementation of the controller as the CMCU
with outputs identi�cation and function decoder;

• SC - results achieved for implementation of the controller as the CMCU with
sharing codes;

• SD - results achieved for implementation of the controller as the CMCU with
sharing codes and function decoder;

• CA - results achieved for implementation of the controller as the CMCU with
address converter;

• CD - results achieved for implementation of the controller as the CMCU
with address converter and function decoder.

The method that gives the best results (the CMCU that requires the fewest
LUT elements of an FPGA) is marked by gray color. Additionally, in case of
benchmarks where an application of address converter reduces the number of re-
quired dedicated memory blocks in comparison to traditional sharing codes, the
number of BRAMs used by CMCUs USC and USD are marked in red.
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B.2 Detailed results of partial recon�guration of
CMCUs implemented on an FPGA

This section presents results gained during partial recon�guration of CMCUs. To
verify the e�ectiveness of partial recon�guration of controllers implemented in the
FPGA, there were four CMCUs selected:

• Test002 that contains control memory implemented with one BRAM,

• Lights that contains control memory implemented with 4 BRAMs,

• Test027 that contains control memory implemented with 5 BRAMs.

• Test036 that contains control memory implemented with 13 BRAMs.

All benchmarks except Test002 were checked in three di�erent modes. In the
�rst mode, all BRAMs were organized according to the automatic placement and
routing executed by the Xilinx implementation tool. In this case BRAMs are
usually mixed - some of them are placed in the same column, some of them are
located in di�erent columns.

In the second mode, all BRAMs were placed in the one column. Such an op-
eration was performed with Xilinx FPGA Editor that additionally checks routing
and timing paths. According to the con�guration rules presented in Chapter 6,
the content of BRAMs located in the same column is modi�ed with the same
con�guration frames. It means, that partial recon�guration of such implemented
memories should require the fewest frames, and therefore the size of the partial
bit-stream should be reduced to the minimum.

The third mode organizes all BRAMs in di�erent columns (except Test036
which requires 13 BRAMs, which exceeds the total number of 8 columns, thus
some memory blocks were located in the same column). It is expected, that partial
recon�guration of CMCUs realized in this mode should give the worse gain. The
control memory is implemented with BRAMs located in separate columns and
di�erent frames are required for partial recon�guration. Therefore, the reduction
of the bit-stream should be the worst of all presented modes.
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Table B.2 presents results of experiments of partial recon�guration of CMCUs
implemented in the FPGA. There are three main columns in the table:

• Benchmark - contains information about the Benchmark (name, the number
of microinstructions, the number of microoperations, the number of BRAMs
that are required for implementation and the size of the full bit-stream).

• Modi�cation - contains information about modi�cations that were done to
the Benchmark (the number of modi�ed microinstructions, the number of
BRAMs where microinstructions were modi�ed, the total number of modi�ed
lines (INITs), the number of columns that contain modi�ed BRAMs).

• Results - contains information about achieved results (the number of di�erent
frames, the size of the partial bit-stream, the percentage of the comparison
between full and reduced bit-streams and achieved reduction - the number
of times that original bit-stream was reduced).

As it was expected the best results were achieved in the second mode, where all
BRAMs were placed in the same column. Even in case of Test036 which requires
13 BRAMs, swapping the memory content is performed using only 32 frames and
size of the partial bit-stream is over 50 times smaller compared to the
bit-stream containing full FPGA con�guration data.

The worst results were achieved in the third mode, where BRAMs were located
in the di�erent columns. In case of Benchmark Test036, 256 frames have to be
sent to the FPGA to replace the whole memory content. However, it should be
pointed out that the bit-stream is still reduced over 8 times.
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Metody syntezy ukªadowej cz¦±ci
steruj¡cej w mikrosystemie cyfrowym

Streszczenie

Jednostka steruj¡ca jest jednym z najwa»niejszych elementów ukªadu cyfrowego.
Bardzo szybki rozwój w dziedzinie techniki cyfrowej spowodowaª pojawienie si¦
zintegrowanych ukªadów takich jak System-on-a-Chip (SoC ) czy System-on-a-
Programmable-Chip (SoPC ), w których bloki funkcjonalne projektowanego ukªadu
implementowane s¡ z wykorzystaniem matryc programowalnych FPGA (Field Pro-
grammable Gate Array). Takie podej±cie wymusza mody�kacj¦ klasycznych metod
projektowania jednostek steruj¡cych. Gªówn¡ cech¡ matryc FPGA jest wykorzys-
tanie elementów LUT (Look-Up Table) do realizacji funkcji logicznych. Liczba
wej±¢ elementu LUT jest ±ci±le ograniczona, co wi¡»e si¦ z zastosowaniem dekom-
pozycji w projektowanym ukªadzie.

Jedn¡ z metod zmniejszenia liczby wykorzystanych elementów LUT jest struk-
turalna dekompozycja jednostki steruj¡cej. Wówczas system jest realizowany jako
ukªad wielopoziomowy, w którym mikrooperacje mog¡ zosta¢ zaimplementowane
w dedykowanych blokach pami¦ci ukªadu FPGA. Poniewa» pojemno±¢ dedykowa-
nych bloków pami¦ci ukªadów programowalnych jest ograniczona, pojemno±¢ pa-
mi¦ci jednostki steruj¡cej powininna by¢ jak najmniejsza. Wymagania te speª-
nia mikroprogramowany ukªad steruj¡cy, w którym zastosowano dekompozycj¦
sterownika na cz¦±¢ zarz¡dzaj¡c¡ (adresuj¡c¡) oraz pami¦¢, w której przechowywane
s¡ mikroinstrukcje kontrolera. Nale»y tu jednak»e zaznaczy¢, »e stosowanie mikro-
programowanych ukªadów steruj¡cych ma sens w przypadku, gdy sterownik mo»e
zosta¢ zinterpretowany opisem tzw. liniowej sieci dziaªa«. W sieci takiej liczba
bloków operacyjnych stanowi co najmniej 75% wszystkich bloków sieci.



W rozprawie zaproponowano sze±¢ autorskich metod syntezy mikropogramowa-
nych ukªadów steruj¡cych. Celem opracowanych algorytmów byªo zmniejszenie
liczby wykorzystanych elementów logicznych docelowego ukªadu FPGA. Ze wzgl¦du
na struktur¦, przedstawione metody syntezy zostaªy podzielone na dwie grupy.
Pierwsza dotyczy mikroprogramowanych ukªadów steruj¡cych o adresowaniu wspól-
nym, gdzie adres mikroinstrukcji jest wykorzystywany do rozpoznania stanów
wewn¦trznych sterownika. Zaproponowano trzy nowe metody syntezy ukªadu
o adresowaniu wspólnym:

• Ukªad z dekoderem funkcji - w którym wprowadzono dodatkowy blok deko-
dera funkcji. Ide¡ metody jest zakodowanie funkcji wzbudze« dla licznika,
która jest nast¦pnie dekodowana przez dekoder funkcji. Dodatkowy blok
jest implementowany z wykorzystaniem dedykowanych bloków pami¦ci ma-
tryc FPGA, co pozwala zredukowa¢ liczb¦ wykorzystanych elementów LUT
w porównaniu do tradycyjnej realizacji sterownika o adresowaniu wspólnym.

• Ukªad z identy�kacj¡ wyj±¢ - w którym stany wewn¦trzne sterownika kodo-
wane s¡ z wykorzystaniem minimalnej, niezb¦dnej liczby bitów. Dzi¦ki temu
zmniejszona zostaje liczba wej±¢ ukªadu kombinacyjnego, a co za tym idzie
liczba bloków logicznych, niezb¦dnych do implementacji tego moduªu oraz
caªego sterownika w matrycach FPGA.

• Ukªad z identy�kacj¡ wyj±¢ oraz dekoderem funkcji - w którym zastosowano
poª¡czenie obu wy»ej opisanych rozwi¡za«.

Druga grupa metod bazuje na idei wspóªdzielenia kodów. W tym przypadku
adres mikroinstrukcji jest wyznaczany na podstawie kodów generowanych zarówno
przez licznik, jak i przez rejestr. W obr¦bie sterownika ze wspóªdzieleniem kodów
tak»e zaproponowano trzy nowe rozwi¡zania:

• Ukªad z dekoderem funkcji - w którym wprowadzono dodatkowy blok deko-
dera funkcji. Ide¡ metody jest zakodowanie funkcji wzbudze« dla licznika
oraz dla rejestru. Funkcje te s¡ nast¦pnie dekodowane przez dodatkowy blok.
Dekoder funkcji jest realizowany z wykorzystaniem dedykowanych bloków
pami¦ci matryc FPGA, co pozwala zredukowa¢ liczb¦ wykorzystanych ele-
mentów LUT w porównaniu do tradycyjnej realizacji sterownika o adresowa-
niu wspólnym.



• Ukªad z konwerterem adresów - w którym zastosowano dodatkowy blok kon-
wertera adresów mikroinstrukcji. Metoda ma sens w przypadku, gdy rozmiar
kodów generowanych przez licznik oraz rejestr jest wi¦kszy ni» minimalny
rozmiar adresu mikroinstrukcji. Ka»dy nadmiarowy bit oznacza podwojenie
pojemno±ci pami¦ci ukªadu mikroprogramowanego. Zastosowanie konwert-
era adresów pozwala utrzyma¢ minimalny rozmiar adresu mikroinstrukcji.

• Ukªad z konwerterem adresów oraz dekoderem funkcji - w którym zastosowano
poª¡czenie obu prezentowanych powy»ej idei. Konwerter adresów umo»liwia
zastosowanie metody ze wspóªdzieleniem kodów w przypadku, gdy rozmiar
kodów generowanych przez licznik oraz przez rejestr jest wi¦kszy ni» mini-
malny rozmiar adresu mikroinstrukcji. Dodatkowo dekoder funkcji pozwala
zmniejszy¢ liczb¦ bloków LUT niezb¦dnych do realizacji ukªadu w matrycach
FPGA.

W celu wery�kacji skuteczno±ci algorytmów zaproponowanych w rozprawie,
opracowany zostaª system automatycznej syntezy mikroprogramowanych ukªadów
steruj¡cych (ATOMIC ). �rodowisko skªada si¦ z trzech niezale»nych moduªów,
które realizuj¡ kolejne etapy projektowe jednostki steruj¡cej. Na podstawie specy-
�kacji sterownika przedstawionej w formie tekstowej, ATOMIC przeprowadza au-
tomatyczny proces dekompozycji strukturalnej. Wynikiem dziaªania systemu jest
opis mikroprogramowanego ukªadu steruj¡cego w j¦zykach opisu sprz¦tu. Tak
przygotowany sterownik mo»e zosta¢ w konsekwencji zaimplementowany w do-
celowym ukªadzie FPGA. Warto podkre±li¢ fakt, »e ATOMIC jest niezale»ny od
platformy oraz systemu operacyjnego. Program mo»e zosta¢ uruchomiony zarówno
w ±rodowisku Windows, Unix jak i Solaris.

Przeprowadzone eksperymenty potwierdzaj¡ skuteczno±¢ zaproponowanych
metod syntezy mikroprogramowanych ukªadów steruj¡cych. W badaniach porów-
nano opracowane algorytmy z tradycyjnym sposobem projektowania jednostek
steruj¡cych, realizowanych jako sko«czony automat stanów. �rednio najwi¦ksz¡
skuteczno±¢ uzyskano podczas realizacji ukªadu jako mikroprogramowany ukªad
steruj¡cy z konwerterem adresów oraz dekoderem funkcji. Taki sposób implemen-
tacji sterownika pozwala ±rednio zmniejszy¢ liczb¦ bloków LUT o 50% w porów-
naniu do realizacji ukªadu jako sko«czony automat stanów.



Szczegóªowa analiza wyników bada« pozwoliªa okre±li¢ kryteria doboru metody,
w zale»no±ci od specy�kacji jednostki steruj¡cej:

• W przypadku relatywnie maªych sterowników (w których liczba mikroin-
strukcji nie przekracza 150, a pami¦¢ ukªadu mo»e zosta¢ zrealizowana
z wykorzystaniem jednego bloku pami¦ci FPGA), nale»y zastosowa¢ ukªad
ze wspóªdzieleniem kodów oraz dekoderem funkcji.

• W przypadku sterowników, w których liczba mikroinstrukcji nie przekracza
150, jednak»e pojemno±¢ pami¦ci jednostki steruj¡cej jest wi¦ksza ni» pojem-
no±¢ jednego bloku pami¦ci ukªadu FPGA, nale»y zastosowa¢ ukªad
z konwerterem adresów oraz dekoderem funkcji.

• W przypadku sterowników, w których liczba mikroinstrukcji przekracza 150,
najlepszym rozwi¡zaniem jest zastosowanie ukªadu z identy�kacj¡ wyj±¢ oraz
dekoderem funkcji.

Badania zwi¡zane z cz¦±ciow¡ rekon�guracj¡ mikroprogramowanych ukªadów
steruj¡cych implementowanych w matrycach FPGA pokazaªy, »e redukcja stru-
mienia danych jest silnie zwi¡zana z rozlokowaniem pami¦ci realizowanego sterown-
ika w matrycy FPGA. Najlepsze rezultaty zostaªy osi¡gni¦te w przypadku im-
plementacji moduªu pami¦ci jednostki steruj¡cej w blokach pami¦ci ukªadu pro-
gramowalnego, które s¡ poªo»one w tej samej kolumnie. Takie rozwi¡zanie pozwala
zmniejszy¢ rozmiar strumienia przesyªanego do ukªadu FPGA nawet ponad 500
razy.

Najwa»niejsze wyniki bada« zaprezentowano na konferencjach oraz w czasopis-
mach, w tym w dwudziestu dziewi¦ciu o zasi¦gu mi¦dzynarodowym oraz w pi¦ciu
o zasi¦gu krajowym. Ponadto wymiernym efektem prowadzonych bada« jest naw-
i¡zana wspóªpraca z Uniwersytetem w Hagen (zespóª pod kierunkiem profesora
Halanga) oraz plany opatentowania opracowanych metod.

Cz¦±¢ prowadzonych prac zostaªa zrealizowana w ramach projektu badawczego
�nansowanego ze ±rodków Zintegrowanego Programu Operacyjnego Rozwoju Re-
gionalnego z udziaªem Europejskiego Funduszu Spoªecznego oraz grantu KBN
nr 3 T11C 046 26.


